
GREAT – AAL-2016-023

1

Get Ready for Activity – Ambient Day Scheduling
with Dementia

Applicable software components

Deliverable Name: D2.2 - Applicable softrware components

Deliverable Date: 31.01.2018

Classification: Report

Authors: Quirino Nardin, Walter Ritter, Tom Ulmer, Sandro
Emmenegger, Beat Sauter,

Document Version: V1.0

Project
Coordinator:

University of Applied Sciences Vorarlberg (FHV), Austria

Guido Kempter
// public

GREAT – AAL-2016-023

2

Project Partners: Bartenbach GmbH
Fachhochschule St. Gallen
Apollis – Institut für Sozialforschung und Demoskopie O.H.G.
Intefox GmbH
Altersheim Stiftung Griesfeld
EMT – energy management team AG
CURAVIVA Schweiz
Tirol Kliniken GmbH – Hall

The project GREAT no AAL-2016-023 is funded through the
AAL program of the EU

Preface

This document forms part of the Research Project “Get Ready for Activity – Ambient

Day Scheduling with Dementia (GREAT)” funded by the AAL 2016 “Living well with

dementia” funding program as project number AAL-2016-023. The GREAT project will

produce the following Deliverables:

D1.1 Medical, psychological, and technological framework

D2.1 Applicable hardware components

D2.2 Applicable software components

D2.3 Field tested hardware components

D2.4 Field tested software components

D3.1 Implementation report

D3.2 Field test report

D4.1 Communication strategy

D4.2 Stakeholder management report

D5.1 Report on market analysis

D5.2 Dissemination plan

GREAT – AAL-2016-023

3

D5.3 Final business plan

The GREAT project and its objectives are documented at the project website

http://uct-web.labs.fhv.at. More information on GREAT and its results can also be

obtained from the project consortium:

Prof. Dr. Guido Kempter (project manager), University of Applied Sciences Vorarlberg

(FHV), Phone: + 43 5572 792 7300, Email: guido.kempter@fhv.at

Hermann Atz, Institute for Social Research and Opinion Polling OHG (APOLLIS),

Phone: +39 0471 970115, Email: hermann.atz@apollis.it

Mag. Wilfried Pohl, Bartenbach GmbH, Phone: +43-512-3338-66, Email:

wilfried.pohl@bartenbach.com

Quirino Nardin, Intefox GmbH, Phone: +43 699 1900 8889, Email: info@intefox.com

Dr. Marksteiner Josef, Tirol Kliniken Hall, Phone: +43 (0)50504 33000, Email:
josef.marksteiner@tirol-kliniken.at 	

Mag. Tom Ulmer, University of Applied Sciences St. Gallen (FHS), Phone: +41 71 226 17

41, Email: tom.ulmer@fhsg.ch

Beat Sauter, energy management team ag (emt), Phone: +41 71 660 02 86, Email:

beat.sauter@emt.ch

Anna Jörger, CURAVIVA Schweiz, Phone: +43 (0)31 385 33 45, Email:

a.joerger@curaviva.ch

Cornelia Ebner, Stiftung Griesfeld, ÖBPB – APSP, Phone: +39 (0) 471 82 63 43, Email:

cornelia.ebner@griesfeld.it

GREAT – AAL-2016-023

4

GREAT – AAL-2016-023

5

Content

1. Great Prototype Software Components ... 7	
1.1 System Overview .. 7	

1.2 System Architecture ... 8	

2. Controller ... 9	
2.1 Intefox Middleware .. 10	

2.2 Wireless Access Point, Router .. 11	

2.3 OpenVPN Client ... 15	

3. Intefox - Middleware .. 16	
3.1 Architecture and Components (foxcore) ... 16	

3.2 Configurator software .. 16	

3.2.1 Online Bundle manager .. 17	

3.3 Logging and Data Access interface ... 18	

3.3.1 Event logger configuration ... 19	

3.3.2 Log settings (Selecting the events to be logged) ... 21	

3.3.3 Data access interface .. 22	

3.4 Controller & Visualization interface .. 26	

3.4.1 LiveCycle of a Visualization client ... 26	

3.4.2 Login .. 26	

3.4.3 Request object descriptions ... 27	

3.4.4 Request structure ... 30	

3.4.5 LongPoll request ... 32	

3.4.6 Send commands ... 33	

4. Light ... 34	
4.1 Biodynamic Light Extension Bundle .. 34	

4.1.1 Light curve object description ... 36	

4.1.2 Protokoll data exchange between light and controller 39	

4.2 DATA: Controller to light .. 39	

4.3 Statusresponse from light to controller ... 39	

4.4 Teach In ... 40	

4.5 Definition Factory default .. 41	

5. Sound Module ... 42	

GREAT – AAL-2016-023

6

5.1 Image preparation ... 42	

5.1.1 Basics ... 43	

5.2 Shairport-Support (for AirPlay functionality) .. 44	

5.3 WLAN Setup .. 45	

5.4 Music Module Extension Bundle ... 46	

5.6 Sound Module Protocol Description .. 49	

5.6.1 Commands from client to server: .. 50	

5.6.2 Commands from server to client: .. 53	

5.7 Relevance/Reuse-potential outside GREAT .. 54	

6. Scent Module .. 55	
6.1 Image preparation ... 56	

6.2 Scent Module Extension Bundle ... 56	

6.3 Scent Module Protocol Description ... 58	

6.3.1 Commands from client to server: .. 59	

6.3.2 Commands from server to client: .. 59	

6.4 Relevance/Reuse-potential outside GREAT .. 60	

7. Sensors ... 60	
7.1 PIR Sensor ... 60	

7.2 Biovotion Everion Sensor .. 61	

7.3 Stress detection .. 62	

7.4 Architecture .. 63	

7.5. Gathering vital data (test phase 1) ... 64	

7.5.1 Setup ... 65	

7.5.2 Pairing malfunction tipps .. 68	

7.5.3 Run data gathering ... 68	

7.5.4 High stress triggers (testphase 2) .. 70	

8.	 User-Interface for Control ... 71	
9.	 Outlook ... 72	
10.	 References ... 74	
11.	 List of figures ... 76	
12.	 List of Tables ... 77	

GREAT – AAL-2016-023

7

1. Great Prototype Software Components

1.1 System Overview

The GREAT system should be usable in widely varying environments. Therefore, a
highly modular approach has been chosen. Individual components like light, sound,
and scent modules can be used individually or in combination with one another. The
system also gathers data from motion detectors and physiology sensors worn by
caregivers to detect potential activity/relaxation levels of persons in a room. The
system can be controlled via a mobile app manually as well as dedicated hardware
buttons, that can be added to the system based on local requirements (see Figure 1
for an overview).

One important principle of the GREAT system is that users must always be in full
control of the system, meaning that they will always be able to start/stop actions
manually.

Figure 1: GREAT Components Overview, Source: GREAT consortium.

In a first phase, the system gathers data from motion detectors and physiology
sensors as foundation for an analysis of typical patterns. Caregivers are also able to

GREAT – AAL-2016-023

8

give their current impression of the patient’s state (e.g. whether they are very relaxed
up to highly activated). During this time caregivers can manually trigger activation-
or relaxation-cycles. For learning purposes, the system logs every activity.
In a second phase, the system recommends to caregivers the triggering of
activation-/relaxation-cycles, when it detects certain situations. The actual triggering
of these cycles however is still up to the caregivers.
By the end of the field tests, the system should have gathered enough data to trigger
activation/relaxation cycles automatically.

1.2 System Architecture

The GREAT system is comprised of a main controller, light-, scent-, and sound-
modules, sensors for room-based motion activity and physiological data capturing
for selected caregivers, as well as a cloud based storage and configuration layer
(see Figure 2).

Figure 2: GREAT Distributed System Overview, Source: GREAT consortium.

The main component of the GREAT system is the local controller, that acts as a
coordinator among the different other components. It runs an already available
middleware solution for smart buildings control (provided by Intefox) with built-in
support for a wide range of common building automation protocols (e.g. DALI,

RPi zero w

DAC+ zero

SoundProviderService

Intefox
Controller

trigger sound XX

DataArchiveServiceRuleService

ScentDispenser
trigger scent XX

Light
trigger lights (RGB)

Motion

Switch

Physiology

Analysis
Module

archive data

new sounds?archive data
new rules?

Enocean

Enocean

Enocean

WLAN

WLAN?

AirQuality

i2c

Active

App
WLAN

FeedbackService

FH
V

C
lo

ud
Lo

ca
l I

ns
ta

lla
tio

n

WLAN

GREAT – AAL-2016-023

9

EnOcean, KNX,…). The middleware system is also highly extensible to allow for
integration of new components, either based on standard protocols or application
specific ones.

Multiple GREAT systems can be used at the same time in multiple locations, each of
them can be tailored to local requirements.

The controller and the modules are connected over wireless links (EnOcean, WLAN,
optionally Bluetooth LE). A WLAN is provided by the GREAT controller itself to allow for
efficient connection of components. For internet connection, an Ethernet port with
publicly accessible Internet is required. Alternatively, also a USB WLAN adapter can
be used to connect the system to an existing WLAN.

Figure 3: Distributed GREAT installations connected over VPN.

All communication from the controller to the Internet is encrypted. To allow for
remote administration of the system, individual controllers are connected into a
virtual private network, thus not requiring an externally accessible IP-address (see
Figure 3).

2. Controller

The software stack of the GREAT controller is based on the open source Raspbian
Jessie Linux distribution for Raspberry PI single board computers. The three main
software modules of the controller are:

• Intefox Middleware stack for building automation
• Wireless Access Point functionality including routing

Controller

Music Scent

Remote
Management

OpenVPN
Server

GREAT Virtual Private Network

GREAT Private WLAN

Internet Gateway

Controller

Internet Gateway

GREAT Private WLAN

... Music Scent ...

▶ ▶

▶

TLS encrypted connections

Controllers provide local WPA2 protected WLAN

No externally accessible IP-Address required

GREAT – AAL-2016-023

10

• OpenVPN Client for remote management

2.1 Intefox Middleware
The main purpose of the middleware is to hide the details of the individual
component communications und provide unified access to individual
objects/components. In this way, e.g. additional lights could be easily added into
the GREAT system, even if they used some different building automation standard
like KNX or DALI. At the GREAT software layer, they would be treated the same. In
addition to this hardware abstraction layer it also provides a broad list of features
that allow for rapid prototyping (drag & drop configurations), ready-made mobile
apps, and event logging functionalities.

The basic architecture of the Intefox middleware software is based on an OSGi
(originally Open Services Gateway initiative) software layer (see Figure 4).

Figure 4: OSGi Architecture Diagram, Source: OSGi Alliance,
https://www.osgi.org/developer/architecture

By using the OSGi dynamic component architecture, the functionality of the
controller-software can be extended even at runtime. The Intefox system allows for
easy extension of the system by means of so-called bundles. These bundles typically
feature inputs, where they listen for incoming events, and outputs, where they can
send events. So, for example in GREAT, a new bundle for the sound component was
created, that manages encrypted communication with the sound component. It
provides a set of inputs that can be used for controlling the sound module, and a set
of outputs that provide other components with information (e.g. the status of the
sound component).

GREAT – AAL-2016-023

11

In the GREAT setup, the Intefox middleware software runs on a Raspbian Linux
operating system, but could be run on other Linux-/macOS- or Windows-based
systems too, if a Java Runtime environment is available.

The configuration of the controller is edited using a graphical configurator software
based on the open source Eclipse rich client platform (RCP) that is available for
multiple platforms (e.g. Linux, macOS, or Windows) (see Figure 5). Connections
between inputs and outputs of modules can be made via drag & drop.

Figure 5: Screenshot of the Intefox configuration software showing connections between individual
elements.

See chapter 3 for a more detailed description of relevant components of the
middleware system.

2.2 Wireless Access Point, Router
Each GREAT controller provides its own GREAT wireless network, to allow for easy
connection of WLAN based components or mobile app based remote controls,
independent of the local availability of a WLAN. The GREAT WLAN is an encrypted
WPA2 network for security reasons.

The wireless access point functionality provided by the GREAT controller is built using
the open source packages hostapd and dnsmasq. These packages must be installed

GREAT – AAL-2016-023

12

using apt-get, as they are not part of the standard installation of Raspbian.

The hostapd provides the functionality for the actual access point, while dnsmasq is
a light weight DHCP and DNS server and therefore hands out IP addresses to
connected clients.

In the GREAT setup, we use the built in WiFi interface wlan0 as basis for our access
point. To avoid that this interface is being used otherwise, it needs to be denied in
the /etc/dhcpcd.conf above any other interface lines.

denyinterfaces wlan0

The actual interface definition then takes place in the /etc/network/interfaces file:

allow-hotplug wlan0

iface wlan0 inet static

 address 172.24.1.1

 netmask 255.255.255.0

 network 172.24.1.0

 broadcast 172.24.1.255

This defines a static IP address of the access point interface of 172.24.1.1. In a next
step the hostapd is configured to provide a GREAT wireless network. Configuration of
this network happens in /etc/hostapd/hostapd.conf

The typical config for GREAT looks like

This is the name of the WiFi interface we configured above
interface=wlan0

Use the nl80211 driver with the brcmfmac driver
driver=nl80211

This is the name of the network
ssid=GREAT

Use the 2.4GHz band
hw_mode=g

Use channel 6
channel=6

Enable 802.11n
ieee80211n=1

Enable WMM
wmm_enabled=1

Enable 40MHz channels with 20ns guard interval
ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40]

Accept all MAC addresses
macaddr_acl=0

Use WPA authentication
auth_algs=1

Require clients to know the network name
ignore_broadcast_ssid=0

GREAT – AAL-2016-023

13

Use WPA2
wpa=2

Use a pre-shared key
wpa_key_mgmt=WPA-PSK

The network passphrase
wpa_passphrase=**********

Use AES, instead of TKIP
rsn_pairwise=CCMP

This basically sets up a WPA2 wireless network on the 2.4 GHz band with a network
SSID of GREAT.

In the /etc/dnsmasq.conf file the details of the DHCP part of dnsmasq are
configured. Specifially the DHCP range, name servers, interfaces and listen addresses
are defined here. The specific settings used in GREAT are:

domain-needed

bogus-priv

server=8.8.8.8

interface=wlan0

listen-address=172.24.1.1

bind-interfaces

dhcp-range=172.24.1.50,172.24.1.150,12h

as well as mappings of hostnames for up to 5 sound- and scent-components.

dhcp-host=greatmusic,172.24.1.2,infinite

dhcp-host=greatscent,172.24.1.3,infinite

dhcp-host=greatmusic2,172.24.1.4,infinite

dhcp-host=greatscent2,172.24.1.5,infinite

dhcp-host=greatmusic3,172.24.1.6,infinite

dhcp-host=greatscent3,172.24.1.7,infinite

dhcp-host=greatmusic4,172.24.1.8,infinite

dhcp-host=greatscent4,172.24.1.9,infinite

dhcp-host=greatmusic5,172.24.1.10,infinite

dhcp-host=greatscent5,172.24.1.11,infinite

This allows for creating port forwarding rules to specific components for remote
management tasks.

A final configuration step involves the iptables routing software. Here traffic from the
eth0 interface is forwarded to the wlan0 interface. The routing information is loaded
from a persistence file in the rc.local phase.

Excerpt of the iptabes-save persisted file that is loaded on startup:

GREAT – AAL-2016-023

14

Generated by iptables-save
*filter
:INPUT ACCEPT [4823:503443]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [3401:1416793]
-A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i wlan0 -o eth0 -j ACCEPT
COMMIT
Completed on Fri Aug 18 09:09:28 2017
Generated by iptables-save v1.4.21 on Fri Aug 18 09:09:28 2017
*nat
:PREROUTING ACCEPT [19:2901]
:INPUT ACCEPT [16:2709]
:OUTPUT ACCEPT [4:316]
:POSTROUTING ACCEPT [0:0]
-A PREROUTING -p tcp -m tcp --dport 33101 -j DNAT --to-destination 172.24.1.2:22
-A PREROUTING -p tcp -m tcp --dport 33102 -j DNAT --to-destination 172.24.1.3:22
-A PREROUTING -p tcp -m tcp --dport 33103 -j DNAT --to-destination 172.24.1.4:22
-A PREROUTING -p tcp -m tcp --dport 33104 -j DNAT --to-destination 172.24.1.5:22
-A PREROUTING -p tcp -m tcp --dport 33105 -j DNAT --to-destination 172.24.1.6:22
-A PREROUTING -p tcp -m tcp --dport 33106 -j DNAT --to-destination 172.24.1.7:22
-A PREROUTING -p tcp -m tcp --dport 33107 -j DNAT --to-destination 172.24.1.8:22
-A PREROUTING -p tcp -m tcp --dport 33108 -j DNAT --to-destination 172.24.1.9:22
-A PREROUTING -p tcp -m tcp --dport 33109 -j DNAT --to-destination 172.24.1.10:22
-A PREROUTING -p tcp -m tcp --dport 33110 -j DNAT --to-destination 172.24.1.11:22
-A POSTROUTING -o eth0 -j MASQUERADE
-A POSTROUTING -p tcp -m tcp --dport 22 -j MASQUERADE
COMMIT
Completed

These rules also include network address translation to allow for direct reachability of
the sound- and scent components over SSH for remote maintenance.

Since in some situations there are no wired network connections available, the
GREAT controller also supports connecting to an existing WLAN via a USB WLAN stick
mounted as interface wlan1. When a wlan1 interface is becoming available, a
wlan1_up script adds rules to iptables to route from wlan1 to wlan0 and vice versa.
When the stick is removed and the wlan1 interfaces is down, a wlan1_down script,
removes the rules dynamically again.

Connections via WLAN tend to be prone to disconnecting. Therefore, a script checks
every 5 minutes via cron, if the WLAN connection is still functional and if not, tries re-
establishes the connection to the interface.

WLAN=wlan1
wlanExists=`ifconfig | grep ${WLAN}`
if [$? -eq 0]
then
 router=`ip route | awk '/default/ {print $3;exit;}'`
 ping -I ${WLAN} -c2 $router > /dev/null
 #echo $router

 if [$? != 0]
 then
 ifdown --force ${WLAN}
 /bin/kill -9 `pidof wpa_supplicant`
 ifup --force ${WLAN}
 fi
fi

GREAT – AAL-2016-023

15

The onsite WLAN credentials can be easily set using a wpa_supplicant.conf file, that
is placed into the root of the boot partion of the Raspberry PI microSD Card. The
system then moves this file into the proper place automatically
(/etc/wpa_supplicant/) and uses these credentials. Typically this text file includes the
information:

country=AT
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={
 ssid="networkName"
 psk="networkPassword"
 key_mgmt=WPA-PSK
}

Instead of directly supplying a password, also the actual key can be supplied. This
key for a given SSID can be generated using the wpa_passphrase command on the
Raspberry.

2.3 OpenVPN Client
Since the GREAT prototypes will be used in various places in Austria, Italy and
Switzerland, it’s important to be able to update the systems via a remote
connection. However, often it’s not possible to get an externally reachable IP
address at the institutions. To avoid the need of an externally reachable IP address,
the GREAT controller connects itself into a remote management virtual private
network hosted by the FHV (see figure XX) automatically when a network connection
becomes available. On the client this is achieved by installing the openvpn-package
and passing a client specific configuration (typically an ovpn-file, but this needs to
be renamed to conf) to the service. It is then enabled by calling for example:

sudo systemctl enable openvpn@clientConfig1

The virtual private network is implemented using the open source VPN server
OpenVPN. It is configured to apply TLS encryption to connections. Each GREAT
controller and maintainer computer has its own certificate. Only clients with a valid
certificate can connect to this network. The VPN network is configured to use TCP
Port 443 for communication to avoid firewall issues on location.

In case of a remote management task, the maintainer connects a computer to the
VPN and can then access GREAT controllers using their hostnames via SSH, as long as
the controllers are connected to the Internet. The main controllers listen for SSH
connections on port 33100. Submodules can then either be reached via SSH
connections originating from the controller, or via port forwarding on the controller
directly from the maintainer’s computer.

GREAT – AAL-2016-023

16

3. Intefox - Middleware

3.1 Architecture and Components (foxcore)

The foxcore server runs on a java runtime and is using the OSGi standard to load and
unload bundles during runtime and provides RESTful interfaces for configuration,
control and visualization clients.

Figure 6: Basic architecture of the foxcore server

Figure 6 showsthe basic arichtecture oft he foxcore server, illustrating the layered
model to provide abstraction for different technologies and interfaces.

3.2 Configurator software

The fox.configurator is used to configure and manage foxcore servers. The
connection is established via TCP/IP and can therefore be used to either connect
locally or remotely. Figure 7 shows the example of inserting a new light object into
the system configuration.

GREAT – AAL-2016-023

17

Basic features:

- Managing bundles and updates
- Creating and managing objects
- Bundle activation (licensing)
- Managing configurations
- Server diagnostics
- User management
- Timer and Schedulers management
- Managing Cloud services (AutoBackup, Database, PushNotification, Alexa,

etc)
- Enabling control and visulization interface
- Commissioning
- Live events

Figure 7: fox.configurator, example of adding a new light object

3.2.1 Online Bundle manager

The online bundle manager is fully integrated into the configurator software.

The bundles are managed through an online sharing platform where it allows a
software developer to upload and share the bundle to others. In that way, it makes it
very easy for everyone to install and update bundles on the controller. Figure 8 shows
the bundle selection screen to extend the functionality of the core system.

GREAT – AAL-2016-023

18

Figure 8: Online bundle manager

3.3 Logging and Data Access interface

fox.core
event logger

fox.core
event logger

fox.core
event logger

fox.core

Database service

fox database json
interface (https)

Figure 9: Basic structure of the event logging architecture

GREAT – AAL-2016-023

19

Figure 9 illustrates the basic event logging architecture that consists of a database
service backend, as well as event logger objects.

Database service

The database service is available as a fox.core bundle and is designed to either run
within the same local network or some hosted server on a fox.core based system.

Currently PostgreSQL is supported as database backend. Further database types
might be added, as the need for it arises though.

Event Logger

An event logger processes defined events and sends them to the database service.
It also takes care of buffering events locally, if the remote database service is not
available at the time. It is available as a fox.core bundle and is designed to run on a
fox.core based system.

Multiple instances are allowed on the same controller as well as on different
controllers to send the data to the same database service.

Through the event logger it is also possible to compare the logged values from a
local controller with values from other controllers live in charts views and reports if
they are being logged to the same database.

3.3.1 Event logger configuration

Creating the Event logger

First, an event logger object needs to be created. Therefore, select the 'Database
loggers' container within the System tree and select 'Add object'. Figure 10 and
Figure 11 illustrate the process.

GREAT – AAL-2016-023

20

Figure 10: Select the created event logger and edit the properties (URL and Context)

Figure 11: Properties of the event logger service

URL:

If the database runs on the same controller, the URL would be like this:

http://localhost:8080/db

Context:

the database name set in the database service configuration. (e.g. myDBname)

Send interval:

Defines the minimum interval to be used to send the queued data to the database
service.

GREAT – AAL-2016-023

21

Send Buffer:

Defines the buffer size for queueing the data before sending to the database
service.

If the queue is full, the data will be sent immediately.

Discard data older than

Defines, how long the data will be kept in the queue if the data could not been sent
due to any communication error with the database service.

The event logger uses the interface (described in section 'interface') for the data
exchange.

3.3.2 Log settings (Selecting the events to be logged)

With the event logger configuration editor (by double clicking the 'event logger
object)

the events can be selected to be logged.

There are 2 ways to select the event:

- Type: all objects of this type will be logged with the defined settings
- Object: single objects will be logged with the defined settings

Figure 12 shows the configuration of an eventlogger to log the temperature output
of all temperature sensors in the system, even if they might be added at a later point
in time.

GREAT – AAL-2016-023

22

Figure 12: In our example, the 'Temperature' output of all 'Temperature sensors' will be logged, even if
they are being created later.

3.3.3 Data access interface

The database service offers a REST-based interface to store and retrieve data
as well as to read the logging configuration. Parameters are encoded using
json format.

format: http://localhost:8080/db/<cmd>?params...

cmd: data

writes Event data to the Database

the data is being sent as post data in json format

Description with example data:

http://localhost:8080/db/data

< POST DATA AS JSON>

GREAT – AAL-2016-023

23

cmd: readconfig

retrieves the current foxEvents table with objectIds in json format

parameters:

id database id

coreid if not set, ALL events of all cores will be returned

statistics includes the current amount of data logged of each event

space includes the space being used by the DB and also the free space

cmd: getdata

request data in json format

parameter:

id database id

eid comma separated id's of foxevents (known when previously read from config)

 (or)

objId id of FoxNode object

key the in- or output key depending on dirout

dirout 0 = input key, 1 = output key

from epoch format (milliseconds since 1.1.1970)

to epoch format (milliseconds since 1.1.1970)

dur duration in milliseconds (note: use either 'to' or 'dur')

 (or)

range -->possible values: keyword[,back,count]

 (back = keyword units back, count = range in keyword units,

 e.g. month,6,3 = starting from 6 month's back with a range of 3 months

 thishour

 lasthour

 today

GREAT – AAL-2016-023

24

 yesterday

 thisweek

 lastweek

 thismonth

 lastmonth

 thisyear

 lastyear

hour,back,count

 day,back,count

 week,back,count

 month,back,count

 year,back,count

maxpoints the maximum number of points returned per eventId. Default value = 100

debug if debug parameter is present, the returned values will include additional
information of

 the requested eventId's

units a string based unit map

è example value: K=°C,m/s=km/h
o will return all temperature values as '°C' and all velocity values as

'km/h'

unituser the id of a user object. If the user exists, the unit map will be taken from the
user properties

rangeinfo if rangeinfo parameter is present, the returned values will include the
requested 'from' and 'to' timestamp. This is helpful if the request is done by a
range keyword

GREAT – AAL-2016-023

25

examples:

http://localhost:8080/db/getdata?id=qnhome&eid=3&range=lastweek&debug

--> returns a json with data of object with eventId=3 of last week, also includes
additional debug informations

http://localhost:8080/db/getdata?id=qnhome&eid=3,5&range=month,6,3

--> return a json with data of objects with eventId = 3 and 5 from 6 month back with a
range of 3 months

http://localhost:8080/db/getdata?id=qnhome&objId=7jgbd7kx&key=out&dirout=1&from=149
898498000&duration=360000

type line (default), sum, day, week, month, year

type sum:

retrievs the total value only plus price if a pricetable is assigned

 example: (analog values)

 sum (value per hour): 345 kWh

 price (through price table) 123,23 EUR

 example: (digital values)

 count (impulses), true count (boolean)

type day:

 retreives the total value of 1 day and 24 hour values

type week

 retreives the total value of 1 week and 7 day values

type month

 retrieves the total value of 1 month and 28-31 day values

GREAT – AAL-2016-023

26

type year

 retreives the total value of 1 year and 12 month values

3.4 Controller & Visualization interface

3.4.1 LiveCycle of a Visualization client

1) Login (retrieves last version id to check if a reload of descriptions is necessary)
2) getDescriptions
3) getStructure (mixed with requested Style)
4) poll (receive Status updates)
5) Send commands asynchronously

HTTP request, format:

http://host:port/json/session_id/key

return format is json

3.4.2 Login
key: login

Table 1: Login Parameters

user the user name for the visu user
pwd the password for the visu user

note: the login procedure will be changed in future to a more secure
method

style optional: customized style properties for each single object
appid optional – see PushNotification support
devtoken optional – see PushNotification support
id optional – see PushNotification support

GREAT – AAL-2016-023

27

Figure 13: Example login request

3.4.3 Request object descriptions
key: descs

Retrieves a description of each object type which is represented in the current visu
configuration for the user logged in. Additionally, the object type and the current
values of each single object will be added at the end.

The json is splitted in 2 parts:

- descs contains possible commands to send status values returned
o i id of object type (e.g. fox.light, fox.blinds)
o c commands to be send to the core
o s status to be received from the core

§ n display name of the command or status
§ k key of the command or status to be used for identication
§ t value type (see table below)
§ u unit of each value (e.g. %, ms‚ °C)

- objs contains object id and current status values
o i id of the object (unique id per object)
o t object type (this value refers to the id (i) in descs (see Table 2)
o v current values of the object (see Table 3)

GREAT – AAL-2016-023

28

Table 2: Request object types (t)

none Trigger (no value)
1 Boolean (0 = false, 1 = true)
2 Integer (signed value, uses internaly 4 bytes)
3 Double (floating point value, uses internally 8 bytes)
4 String (Text)
5 Enumeration (Integer value)
6 Bytes (starting with 0x, example: 0xa1bb4c83)
7 Long (signed value, uses internally 8 bytes)
8 Float (floating point value, uses internally 4 bytes)
9 Tristate (0 = false, 1 = true, 2 – undefined)

Table 3: Request values (v)

The ‚#’ key refers to the main value of the command or status
<key> If a command or status has more values, sub values are identicated by a key

word

GREAT – AAL-2016-023

29

Figure 14: Example description request

GREAT – AAL-2016-023

30

3.4.4 Request structure

key: structure

No parameters.

Retrieves the hirarchical structure of the visualization configured for the user logged
in.

Json key description:

- contains the structure in hirarchical order
o p page id – a page can either be a ‚page’ object or a container

object (room, floor etc).
o r page id – this is a ‚reference container object’ (building, floor,

room)
 which might contain additional pages

o c category id – used to manage style properties in categories
§ l listed objects in category
§ t category type
§ i short id, refers to ‚c’ properties in ‚page’ or container

objects
o o contains additional objects or pages
o n display name for the object or page
o i object id to refer to in previous request ‚objs’
o s style properties (customizable)

GREAT – AAL-2016-023

31

Figure 15: Example structure request

GREAT – AAL-2016-023

32

3.4.5 LongPoll request

key: poll

No parameters

Retrieves value changes.

Figure 16: Example long poll request with no changes

If no value has changed, the core will respond after 10 seconds with a longpoll
message (see Figure 16).

Figure 17: Example long poll request with changes

When a value got changed, the core will respond immediately with the changed
values (see Figure 17)

Json key description:

GREAT – AAL-2016-023

33

- values contains the values in order of occurence
o i id of the object which has changed values
o v the value – contains the status key and it’s new values

3.4.6 Send commands

key: cmd

Table 4: Command (cmd) parameters

key the key of the command to be send
objIds the id(s) of the objects where the command shall execute

if more than 1 id is used, the id’s must be seperated by semicolon (;)
value the new value . the value should be UTF-8 encoded
subKeys if subValues are submitted, seperated by semicolon (;)
subValues add subvalues in the same order as subKeys, seperated by

semicolon(;)
The values should be UTF-8 encoded

Figure 18: Example cmd request to switch two lighs on

Figure 18 shows an example to switch on two lights.

GREAT – AAL-2016-023

34

4. Light

4.1 Biodynamic Light Extension Bundle

The biodynamic light objects regulate the light instensity and color temperature
during a day period with the possibilities of different interventions (see Figure
19,Figure 20, Figure 21).

The light curve objects send values to 3 separate output channels to set the following
values calculated by a predefined curve in json format:

- dim level (0-100%)
- Color temperature in Kelvin
- fadetime in seconds (0 - 180 sec)

Figure 19: Example biodynamic light definition

Interventions:

0

10

20

30

40

50

60

70

80

90

100

110

120

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E	
%

CC
T

Tageszeit

biodynamic	light
CCT

GREAT – AAL-2016-023

35

Figure 20: Example: Activation Light 'cue' definition

Figure 21: Example: Calming light 'cue' definition

0

2000

4000

6000

010
2030
4050
6070
8090

100110120130

00:00:00 00:05:00 00:05:05 00:21:00

CC
T	
[K
]

E	
[%

]

t	[h]

Activation	Light	"cue"

Eh	(direkt/Task)	[%] CCT

0

1000

2000

3000

4000

5000

0

20

40

60

80

100

120

00:00:00 00:10:00 00:50:00 01:00:00

CC
T	
[K
]

E	
[%

]

t	[h]

Calming	Light	"cue"

Eh	(direkt/Task)	[%] CCT

GREAT – AAL-2016-023

36

4.1.1 Light curve object description

Figure 22: Configuration of the Light curve object in conjunction with the light device

Commands:

Service:

Download curves:

 Downloads a new curve configuration from an external server

Start

 Starts/Stopps the service

Manual control:

Switch

 To switch the light on/off manually (e.g. by an external switch)

Set curve

 Sets the current curve to use for the calculation of the light values

Set dim offset (+/- 0-100%)

 adds a dim offset to the current light values

Toggle

GREAT – AAL-2016-023

37

 To switch the light on/off manually (e.g. by an external switch)

Interventions:

Calming

 Sets a calming intervention (1 hr)

Activating

 Sets the activating interventions (20 min)

TV scene

 Starts the TV scene (1 hr)

Norm light

 Switches to the Norm light curve

Reset

 Switches back to the biodynamic light control

from Rocker switch (Manual control via external switches)

SMART dim

 Dims the light up/down

SMART scene

 Calls predefined scenes

Status:

Current curve

 Shows the name of the current selected curve

Dim offset

 Shows the current dim offset added to the current output values

Debug

 Shows some detailed debug information

Power

 Shows if the light is on or off

State

 Shows if the service has started (Running, Stopped, Failed)

GREAT – AAL-2016-023

38

Control

 3 independent control channels to set the value on the connected lights

Properties:

Config

 curve in json format

Curve server url

 The URL where the curve is being fetched from during automatic update

 e.g.
https://uct.labs.fhv.at/glight/greatcurves/getCurveData.php?key=greatDemo

Curve server update

 Off Automatic updates are disabled

 Every hour Updates the curve every full hour

 Midnight Updates the curve every day at midnight

Simulation mode

 Off Normal operation

 24h in 1 min Simulates 24h in 1 min (1440 times faster)

 24h in 5 min Simulates 24h in 5 min (288 times faster)

 24h in 30 min Simulates 24h in 30 min (58 times faster)

Scale % max

defines the highest % value set within the curves config.

Example: in an 'Activating Intervention' it we like to overrule the regular 100%
value and activate 120% for a short time. In that case, the output values will
be scaled to 0-100% for all calculated values and therefore the regular 100%
would be scaled to 83.3% to be sent to the hardware.

Send delay

Send delay in milliseconds between the cmds. when multiple commands are
sent at the same time

 if not set or 0 means NO pause between commands

Autostart

 Defines wheter this object will be started (true) after System startup or not
(false)

Retry to start

GREAT – AAL-2016-023

39

 Time to wait after the startup failed to restart the object.

4.1.2 Protokoll data exchange between light and controller
The controller acts as master to the lights. All settings and commandes will be sent by
the controller.

4.2 DATA: Controller to light

The light sets the requested color and brightness values in the requested fade time
by its own with predefind correction values.

Basis: Enocean 4BS Telegram: A5-38-09 / modified

Byte Description Bit pos Function Values

0x03 OPTION FLAG

FARBTEMPERATUR
0.7
0.6…0.0

Reserve, Future Use
Color Temperature

0
0 -> 2000K
1 -> 2050K (INC 50K)
127 -> 8350K (1)

0x02 BRIGHTNESS 0.7…0.0 Definition Brightness 0 (OFF)

1 -> Minimalwert
255 -> Maximalwert

0x01 FADETIME 0.7…0.0 Definition Fade Time 0….180 -> 1Sec

181 -> 4Min
255 -> 75Min

0x00 FUNCTION (Receiver) 0.7...0.4 UPLIGHT 7
 DOWNLIGHT FLÄCHE 6
 DOWNLIGHT SPOT 5
 LEARN BIT

0.3 Data telegram

Learn Controller
1 Default
0

 SEND STATUS

0.2 No Status
Send Status

1
0 Default

 STORE FINAL VALUE

0.1 Yes
No

1 Default
0

 SERVICE MODE FLAG

0.0 Service function
Normal operation

1
0 Default

(1) Received color temperature values will be adapted to the defined light color. (Range 2200K..5000K)

4.3 Statusresponse from light to controller

Ist Statusflag in FUNCTION is at Send Status, a Status response with the current values
will be sent 5.5 sec after the last command.

GREAT – AAL-2016-023

40

Byte Description Bit pos Function Values

0x03 OPTION FLAG

CURRENT VALUE
COLOR TEMP

0.7
0.6…0.0

Reserve, Future Use
Current Color Temperature

0
0 -> 2000K
1 -> 2050K (INC 50K)
127 -> 8350K
(1)

0x02 CURRENT VALUE

BRIGHTNESS
0.7…0.0 Current brightness 0 (OFF)

1 -> min value
255 -> max value

0x01 ERROR FLAG

TEMPERATURE VALUE

0.7

0.6..0.0

Error driver
(auto reset)
Temperature of the light

0 -> No error
1 -> Error
0 -> 0°C
100 -> 100°C Max
101..124 reserved,
 Errorspecific.
125 -> Error Temp. Sensor
126 -> No Temp. Sensor
127 -> Temp. Measure in
 process, Initial value
(2)

0x00 FUNCTION (Absender) 0.7...0.4 UPLIGHT 7
 DOWNLIGHT FLÄCHE 6
 DOWNLIGHT SPOT 5
 LEARN BIT

0.3 Data telegram

Learn Controller
1
0

 SEND STATUS

0.2 No Status
Send Status

1
0

 STORE FINAL VALUE

0.1 Yes
No

1
0

 SERVICE MODE FLAG

0.0 Service function
Normal operation

1
0

(2) Not all light elements have integrated temperature sensors. Values from 101 to 125 will be used for Status and error
specifications.

4.4 Teach In

After pressing a button or by manually activating the teachIn function on the lgiht,
the light will switch to the teachIn mode. This will be shown through a flashing light.

The TeachIn mode will be activated with a maximum duration of 1 minute. After that
the light will be switched back to normal operation. A reactivating of the TeachIn
mode will can be switched immediately.

If the Controller sents a Telegram with the TeachIn bit set within this time, the light will
be teached in.

Maximum 5 controllers can be teached in. A long press of the button of at least 5
seconds will delete all teachedIn devices.

GREAT – AAL-2016-023

41

4.5 Definition Factory default

In factory default state, the following functions and values are predefined:

- Each controllr can control the light
- The light is preset to 15% light and 3000K for up-Lights and down-lights.

Timing of commands

The minimum time between commands shall be at least 250ms.

Dimming control

The new values must be at least 100K or 5 brightness points alter to the previous
value.

After receiving of the last value and the 'status flag' has been set, a status response
will be sent to the controller after 5.5 sec.

GREAT – AAL-2016-023

42

5. Sound Module

The sound module offers sound playback for the GREAT system. It is built on top of
existing open source software with a minimal abstraction layer to safely connect the
sound module to the GREAT system.

Figure 23: Communication between the Intefox music module extension and the sound module.

The software stack of the sound module is based on the Raspbian Stretch Lite Linux
distribution for Raspberry Pi. For sound playback, the open source music player
daemon (MPD) is used in combination with the mpc client tool for control (see Figure
23).

A thin abstraction layer on top offers secured communication with the GREAT system
and remote playlist updating.

In addition to the playlist based sound playback offered by mpd, also AirPlay music
streaming is supported using the open source shairport-sync package. This allows for
using the GREAT sound module also as independent wireless speakers.

The sound module is connected to the GREAT system via WLAN. The connection to
the network is monitored and if the network connection is lost (typical reasons could
be power outage at the main controller, wireless signal interferences…),
reconnection attempts will be made periodically until they succeed. This also allows
for automatic connection of the module during installation and after network
dropouts.

Availability of the sound module inside the GREAT network is announced via the
open source avahi-daemon package.

5.1 Image preparation

ALSA

MPD

MusicConnector

IQaudIO
DriverFoxNode

MusicModuleNode

SecureTCP
Communicator

TCP/IP over TLS

Sound ModuleMusicModule Extension Bundle
GREAT WLAN

Shair-
port-
sync

GREAT – AAL-2016-023

43

5.1.1 Basics
The basis for the software stack is the Raspbian Stretch Lite distribution. Once this is
installed, the other software packages used by the sound module must be installed.

First the driver for the Pi-DACZero sound card needs to be activated. This is done
using a dtoverlay-entry in the /boot/config.txt file:

dtoverlay=iqaudio-dacplus

Optionally the onboard audio can be disabled by commenting out the dtparam for
audio-on:

#dtparam=audio=on

Setting up the music player functionality involves installing the mpd and mpc
packages:

sudo apt-get install mpd mpc

In the mpd.conf file, the user group should be adjusted to the audio group

group “audio”

and the audio output needs to be adjusted to use the hardware output devices
provided by the IQaudIO driver

audio_output {

 type "alsa"

 name "My ALSA Device"

 device "hw:0,0" # optional

 mixer_type "hardware" # optional

 mixer_device "hw:0" # optional

 mixer_control "Digital" # optional

 mixer_index "0" # optional

}

Other than that, the default settings are fine.

For the update functionality, the python requests package is required:

sudo apt-get install python-requests

Also, a sounds directory and a tmp directory need to be created that are used for
music storage or temporary files during updates.

mkdir /home/pi/sounds

mkdir /home/pi/tmp

GREAT – AAL-2016-023

44

For the TLS connections to work, the required certificates and key files need to be
copied to /home/pi/certs on the PI:

ca-chain.cert.pem, great_music.cert, great_music_nopw.key

Finally, the files musicModuleServer.py, ThreadedPlaylistUpdater.py and
startMusicConnector.sh need to be copied to the system and an entry to the
crontab needs to be made to automatically start the music connector on startup:

@reboot sh /home/pi/startMusicConnector.sh

5.2 Shairport-Support (for AirPlay functionality)

To build and install the shairport-sync package, follow the instructions, given by the
author at https://github.com/mikebrady/shairport-sync:

Install necessary packages to build the shairport-sync daemon:

sudo apt-get install build-essential git xmltoman

sudo apt-get install autoconf automake libtool libdaemon-dev libpopt-dev libconfig-dev

sudo apt-get install libasound2-dev

sudo apt-get install avahi-daemon libavahi-client-dev

sudo apt-get install libssl-dev

sudo apt-get install libsoxr-dev

Then checkout the latest version of the shairport-sync source code, configure, make
and make install it:

git clone https://github.com/mikebrady/shairport-sync.git

cd shairport-sync

autoreconf -i -f

./configure --sysconfdir=/etc --with-alsa --with-avahi --with-ssl=openssl --with-metadata --with-soxr --with-
systemd

make

sudo make install

Then create a shairport-sync directory in /var/run and change the owner to
shairport-sync:shairport.sync

sudo mkdir /var/run/shairport-sync

sudo chown shairport-sync:shairport.sync /var/run/shairport-sync

GREAT – AAL-2016-023

45

Then create a shairport-sync.conf file in /etc/tmpfiles.d to allow shairport to create
temporary files. The content should be:

d /var/run/shairport-sync 0755 shairport-sync shairport-sync -

Finally adjust the shairport-sync.service file to run as a daemon by editing
/lib/systemd/system/shairport-sync.service and add a ‘-d’ to the ExecStart and
adding a Type = forking line.

ExecStart=/usr/local/bin/shairport-sync -d

Type=forking

In /etc/shairport-sync.conf the name of the speakers (in general section) and quality
parameters can be set. If no name is set, the hostname will be used.

Finally enable the service:

sudo systemctl enable shairport-sync

5.3 WLAN Setup

Each sound module is prepared to connect to the GREAT wireless network. This is
done via the wpa_supplicant.conf file.

network={

 ssid="GREAT"

 psk=87b61f54914c527c67f87766167db5f9626c31a5c7a0d9e30cfe5024be6fa1ec

 key_mgmt=WPA-PSK

}

Instead of supplying the password in clear text, the wpa_passphrase tool can be
used to generate the psk. For this the ssid and password need to be supplied as
parameters.

The interfaces configuration file /etc/network/interfaces sets up the wlan0 interface
to use the wpa_supplicant.conf file.

The interface definition of the interfaces file in /etc/network/ contains:

source-directory /etc/network/interfaces

auto lo

iface lo inet loopback

GREAT – AAL-2016-023

46

iface eth0 inet manual

allow-hotplug wlan0

iface wlan0 inet manual

 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

To watch for network disconnects, a wlanConnector script is run periodically to
check if the gateway is still available. If it’s not available anymore, the wlan0
interface is shut down and re-enabled to try to reconnect again:

#!/bin/bash

ping the router, no need to hit google for this.

SERVER=172.24.1.1

#specify wlan interface

WLANINTERFACE=wlan0

Only send two pings, sending output to /dev/null

ping -I ${WLANINTERFACE} -c2 ${SERVER} > /dev/null

If the return code from ping ($?) is not 0 (meaning there was an error)

if [$? != 0]

then

Restart the wireless interface

/sbin/ifdown --force ${WLANINTERFACE}

/sbin/ifup ${WLANINTERFACE}

fi

The wlanConnector script is run every two minutes as a cron job with the following
definition in crontab:

*/2 * * * * /home/pi/wlanConnector.sh

5.4 Music Module Extension Bundle

The music module system bundle provides functionality of the sound module inside
the Intefox automation system. It communicates with the sound module over a TLS
secured TCP connection.

GREAT – AAL-2016-023

47

The music module bundle is implemented using the OSGi based plugin architecture
provided by the Intefox system.

The music module bundle provides a range of input-connections that can be
connected to outputs of other event sources. It also provides output events that can
be connected to inputs of other components (see Figure 24). In the GREAT context,
the output events are mainly used for logging the system state. See Table 5 for a
description of the input events, Table 6 for a description of the output events and
Table 7 for a description of the parameters.

Figure 24:The available connections for the music module extension for the Intefox system and its
parameter settings.

Table 5: Description of input events of the music module extension.

Input Description

Connect Tries to connect the node to the module at the address given in the URL parameter.

Disconnect Disconnects from the module and closes all connections

Reboot Causes the Sound module device to reboot.

ShutDown Causes the Sound module device to safely shut down.

Play Starts playback of the current song

Pause Pauses playback of the current song

Stop Stops playback of the current song

Previous Jump to the previous song in the playlist

GREAT – AAL-2016-023

48

Next Jump to the next song in the playlist

Select Item Selects the song at the given number in the playlist (e.g. the first song would be 1)

Volume Immediately sets the volume to the given percentage level (volume control is logarithmic)

Fade To Fades to the given percentage level within the Fade Time that is provided in the parameters.

Volume Up Increases the volume by the step size defined in the parameters

Volume Down Decreases the volume by the step size defined in the parameters

Select Playlist Selects the playlist at the given index (zero means the first playlist defined in the Playlists
parameter settings)

Update
Playlists

Causes the sound module to update its playlists. The playlist definition is downloaded from the URL
that is defined in the parameters

Set Fade Time Sets the fade time to the given time in ms

Repeat Mode Turns the repeat mode on/off.

Random
Mode

Turns the random mode on/off.

Single Mode Turns the single mode on/off.

Consume
Mode

Turns the consume mode on/off.

Shuffle Shuffles the order of the current playlist.

Activate Selects and starts the activate playlist on True, stops playback on False

Relax Selects and starts the relax playlist on True, stops playback on False

Table 6: Description of output events of the music module extension.

Output Description

Connected True if connected to the sound module, False if not

State Possible values: Playing, Paused, Stopped, Finished

Playing True if currently playing, False otherwise

Volume Current volume level in %

Progress Progress of the current sound playback in %

Number of
Sounds in
Playlist

Number of sounds in current playlist

Current
Sound File

The currently selected file for playback

Current
Sound
Number

The number of the currently selected file inside the currently selected playlist

Current
Sound Time

The current time of the currently playing sound

Current
Sound
Duration

The total time of the currently playing sound

Last Error The last received error message

Update Status The status of the update process.

Update True if the update is currently running, False otherwise

GREAT – AAL-2016-023

49

Running

Repeat Mode Status of the Repeat Mode

Random
Mode

Status of the Random Mode

Single Mode Status of the Single Mode

Consume
Mode

Status of the Consume Mode

Selected
Playlist

Index of the selected playlist (zero based)

Table 7: Description of paramters of the music module extension.

Parameter Description

IP-Address IP-Address or link local name of the sound module

Port The port on which the sound module listens (default 10023)

Auto-
Reconnect-
Interval

Interval in seconds for automatic reconnection if the connection gets lost. 0 means automatic
reconnect is disabled.

KeyStore File The path to the keystore file containing the certificate for connection to the sound module.

KeyStore
Password

The password for the keystore file

Volume Step
Size

The step size for volume up and volume down commands

Fade Time The time in seconds to transition to the new volume set by the Fade To command

Playlists Comma separated list of playlist names for the mapping between Index (zero based) and playlist
name.

Update URL The URL that provides the playlist information for the sound module. This URL is queried when the
Update command is issued.

5.6 Sound Module Protocol Description

The communication between the music module extension for the Intefox system and
the sound module hardware is based on TLS secured TCP/IP streams. Messages are
exchanged in a text based form and its commands are based on the open source
mpc tool for controlling the mpd music player daemon that is used for the actual
sound playback. A separate musicConnector acts as a wrapper to mpc/mpd that
provides a secured communication layer to the Intefox extension and
communicates with the mpd via the mpc tool.

musicModuleExtension | < - > | musicConnector -> mpc -> mpd

GREAT – AAL-2016-023

50

The music connector receives commands from the music module extension via an
TLS secured TCP/IP stream. It parses the commands and sends them on to the mpc
tool that controls the mpd.

The musicConnector queries the mpc tool for the status of the mpd and sends the
status messages back to the music module extension on the Intefox system.

The music connector acts as a server where the music modules extensions connects
to. Only one client can connect to the server (a music module extension on the
Intefox system has exclusive access).

The music module extension and the sound module must authenticate themselves
using a TLS-Certificate. Only communication between verified peers is allowed.

Messages are sent using a text based stream. If multiple parameters are sent along,
they are delimited by spaces or tabs. Each message is terminated by a newline
character.

cmd [param]><NL>

If the command is accepted by the musicConnector, a simple ack message is sent
back. If a command cannot be handled, a nack message is sent back.

5.6.1 Commands from client to server:

nop

This is a keep alive message with no other purpose.

play <itemNumber>

Plays the item at the specified number. This invokes the mpc play command. The
item number parameter is 1 based (1 means the first item).

stop

Stops the playback. This invokes the mpc stop command.

next

Switches to the next track in the playlist. This invokes the mpc next command.

prev

Moves to the previous track in the playlist. This invokes the mpc prev command.

pause

Pauses playback of the current track. This invokes the mpc pause command.

GREAT – AAL-2016-023

51

shuffle

Shuffles the current playlist. This invokes the mpc shuffle command.

random on|off

Sets the random playback mode of the mpd. This invokes the mpc random
command with the supplied argument.

single on|off

Sets the single playback mode of the mpd. This invokes the mpc single command
with the supplied argument.

repeat on|off

Sets the repeat mode of the mpd. This invokes the mpc repeat command with the
supplied argument.

consume on|off

Sets the consume mode of the mpd. This invokes the mpc consume command with
the supplied argument.

volume <targetVolume>

Sets the playback volume of mpd. This invokes the mpc volume command. If a fade
operation is ongoing at the moment, it is terminated and the volume is immediately
set to the targetVolume.

fadeTo <targetVolume> <fadeTime>

Fades the volume from the current level to the target volume level within the
specified fadeTime (in milliseconds). This repeatedly invokes the mpc volume
command with intermediate steps until the target volume is reached.

playlist <playlistName>

Switches to the specified playlist. This invokes the mpc clear command followed by
the mpc load command with the specified playlist name. Only if playback was
active at the time, the playback for the new playlist will be started automatically. In
this case the mpc play command will be invoked for the first item.

startPlaylist <playlistName>

GREAT – AAL-2016-023

52

Switches to the specified playlist and starts playback. This invokes the mpc clear
command followed by the mpc load command with the specified playlist name
followed by the mpc play command for the first item.

update url

Invokes an asynchronous update of the music playlists. A the server at the URL is
expected to return a playlist description in json format. Then, for each listed item a
mpd compatible m3u playlist file is generated and the respective files are
downloaded from the sources specified in the json description, if they are not
already present on the system.

json-format for update command:

{

 <playlistName> = {

 [

 “soundFile”=<“destination path of sound”>,

 “sourceURL”=<“download url for sound”>

],…

 },

 <playlistName> = {

 [

 “soundFile”=<“destination path of sound”>,

 “sourceURL”=<“download url for sound”>

],…

 },…

}

The reply contains playlists (in the GREAT context playlist names are supposed to be
“activate” and “relax”). Each playlist contains an array of items, where each item is
specified by the soundFile property that specifies the target location on the music
module system, and a sourceURL property that specifies where the sound is available
for download in case it doesn’t already exist on the system.

Status info of the asynchronous update process are sent to the music module
extension while the process is running.

system shutdown|restart

Shuts down or restarts the music module.

GREAT – AAL-2016-023

53

5.6.2 Commands from server to client:
Note, in contrast to the client-server messages, parameters in server-client messages
are delimited by tab, as params can potentially contain spaces in their values.

status finished|playing|stopped|paused

The current playback status. If finished, the playlist has been played to the end. If
playing the playlist is currently playing, if stopped, the playlist is currently stopped, if
paused, the playlist is currently paused.

volume <currentLevel>

The current volume level in %.

repeat on|off

The current repeat setting of mpd.

random on|off

The current random setting of mpd.

single on|off

The current single setting of mpd.

consume on|off

The current consume setting of mpd.

currentSound <soundName>

The name of the currently playing sound.

ack

The command was received and executed

nack

The command was received but not understood. No action has been taken.

GREAT – AAL-2016-023

54

5.7 Relevance/Reuse-potential outside GREAT

The developed wrapper to mpd/mpc and the extension for the Intefox system can
be used in any scenarios that involve mpd-based music playback systems that need
to be controlled from home automation systems.

Outside Intefox powered smart buildings the music module can also be easily
integrated into other smart building middleware systems, due to its lightweight and
open protocol.

The music module can be used independently of any home automation system as
an AirPlay speaker system. The music connector automatically handles airplay
sessions.

GREAT – AAL-2016-023

55

6. Scent Module

The scent module is a remote controllable 2-channel scent dispenser for GREAT. It
offers a simple TCP/IP based remote interface for easy integration into home
automation systems.

Figure 25: Integration of the scent module into the GREAT controller system based on Intefox.

The software stack of the sound module is based on the Raspbian Stretch Lite Linux
distribution for Raspberry Pi which runs on a Raspberry Pi Zero W hardware. For
controlling the scent pump-drive motors, the GPIOs of the Raspberry are used which
are controlled via the Python based GPIO wrapper RPi.GRPIO (see Figure 25). The
current that’s flowing through the motors is measured via a shunt and an I2C based
analog digital converter (see hardware description). To sample and access these
values, the Adafruit_ADS1x15 library is used. A simple peak detection algorithm on
these motor current values is then used to identify the end of a pump cycle.

The scent module is connected to the GREAT system via WLAN. The connection to
the network is monitored and if the network connection is lost (typical reasons could
be power outage at the main controller, wireless signal interferences…),
reconnection attempts will be made periodically until they succeed. This allows for
automatic connection of the module during installation or network dropouts.

Availability of the scent module inside the GREAT network is announced via the open
source avahi-daemon package.

GPIO

ScentServer

FoxNode

ScentModuleNode

SecureTCP
Communicator

TCP/IP over TLS

Scent ModuleScentModule Extension Bundle
GREAT WLAN

RPi.GPIO Wrapper Adafruit
ADS1x15

GREAT – AAL-2016-023

56

6.1 Image preparation

The basis for the software stack is the Raspbian Stretch Lite distribution. Once this is
set up, the following packages need to be installed:

sudo apt-get install git build-essential python-dev

sudo apt-get install python-pip

sudo pip install adafruit-ads1x15

sudo apt-get install python-smbus

Each scent module should get a unique and meaningful hostname. In the GREAT
context, this should be in the format greatscentXX, where xx is a continuous number.
The hostname is adjusted by editing the files /etc/hostname and /etc/hosts by
replacing the default “raspberrypi” with the new name.

For the TLS connections to work, the required certificates and key files need to be
copied to
/home/pi/certs on the PI:

ca-chain.cert.pem, great_scent.cert, great_scent_nopw.key

The WLAN needs to be set up in a similar way as described for the sound module, so
the scent module connects itself to the GREAT network and attempts to reconnect
itself if the network connection is dropped.

Finally, the files scentServer.py, ThreadedPowerReader.py and startScentServer.sh
need to be copied to the system and an entry to the crontab needs to be made to
automatically start the scent server on startup:

@reboot sh /home/pi/startScentServer.sh >> /home/pi/scent.log 2>&1

6.2 Scent Module Extension Bundle

The scent module extension bundle provides functionality of the scent module inside
the Intefox automation system. It communicates with the scent module over a TLS
secured TCP connection.

The scent module bundle is implemented using the OSGi based plugin architecture
provided by the Intefox system.

The scent module bundle provides a range of input-connections that can be
connected to outputs of other event sources. It also provides output events that can
be connected to inputs of other components. In the GREAT context, the output
events are mainly used for logging the system state. See Table 8 for a description of
the input events, Table 9 for a description of the output events and Table 10 for a
description of the parameters.

GREAT – AAL-2016-023

57

Figure 26: Input and output events (left) and parameter settings (right) of the scent module extension.

Table xx: Description of input events of the scent module extension

Table 8: Description of input events of the scent module extension.

Input Description

Connect Tries to connect the node to the module at the address given in the URL parameter.

Disconnect Disconnects from the module and closes all connections

Reboot Causes the Sound module device to reboot.

ShutDown Causes the Sound module device to safely shut down.

Dispense 1 Dispenses scent in slot 1

Dispense 2 Dispenses scent in slot 2

Cancel Stops scent dispensing immediately

Reset 1 Resets the dispense counter for slot 1

Reset 2 Resets the dispense counter for slot 2

Table 9: Description of output events of the scent module extension.

Output Description

Connected True if connected to the scent module, False if not

Last Response The last response sent from the scent module

Dispensing Dispensing state of the scent module: 0…ready, 1…dispensing slot 1, 2…dispensing slot 2

Device Fault True if the driver module reports a fault state, False otherwise

Last Error The last error that occurred.

Warning The last warning code that was received.

Warning
Message

The last warning message that was received.

Actuation Reports a pump cycle on the respective slot.

GREAT – AAL-2016-023

58

Table 10: Description of output events of the scent module extension.

Parameter Description

IP-Address IP-Address or link local name of the scent module

Port The port on which the scent module listens (default 10023)

Auto-
Reconnect-
Interval

Interval in seconds for automatic reconnection if the connection gets lost. 0 means
automatic reconnect is disabled.

KeyStore File The path to the keystore file containing the certificate for connection to the scent module.

KeyStore
Password

The password for the keystore file

Duration The max. duration of a dispense action

Duration per
channel

CSV list of max duration in ms, e.g. 3000,1000 would mean 3 seconds for slot 1, 1 second for
slot 2

Actuations Number of actuations (pump cycles) per dispense action

Actuations
per channel

CSV list of number of actuations per channel, e.g. 2,3 would mean 2 pumps for slot 1, and 3
pumps for slot 2

Current
Actuations 1

Current number of actuations for slot 1 since the last reset

Current
Actuations 2

Current number of actuations for slot 2 since the last reset

6.3 Scent Module Protocol Description

The communication between the scent module extension for the Intefox system and
the scent module hardware is based on TLS secured TCP/IP streams. Every message
received from the client is confirmed by a response from the server running on the
scent module hardware. The server also sends status messages to the client.

The scent module extension and the scent module server must authenticate
themselves using a TLS-Certificate. Only communication between verified peers is
allowed.

Messages are sent using a text based stream. If multiple parameters are sent along,
they are delimited by spaces or tabs. Each message is terminated by a newline
character.

<cmd [param]><NL>

If the command is accepted by the scent module server, a simple ack message is
sent back. If a command cannot be handled, a nack message is sent back.

GREAT – AAL-2016-023

59

6.3.1 Commands from client to server:

nop

This is a keep alive message with no other purpose. If no nop message is received
within 1 minute, the TCP connection is assumed to be lost.

dispense <channel> <duration> [<actuations>]

Triggers a dispense operation for the channel given (1 means first slot, 2 means
second slot) with the specified duration in ms. Optionally also an actuation count
(how many pumps should be applied) can be passed. In this case, the duration
parameter sets the maximum time until the operation should be stopped even if the
actuation count is not reached (e.g. in cases where there is no bottle, or the motor is
blocked).

cancel

Immediately stops the current operation.

system shutdown|restart

Shuts down or restarts the music module.

6.3.2 Commands from server to client:

Note, in contrast to the client-server messages, parameters in server-client messages
are delimited by tab, as params can potentially contain spaces in their values.

ack [<status> <channel>]

The command was received and executed. If the command related to a dispense
operation, the status and the channel involved are included.

Available states:

done: the action has completed for channel channel

nack

The command was received but not understood. No action has been taken.

input fault <val>

Signals whether the fault flag is active or inactive (val=1: fault flag set, val=0: fault
flag reset)

GREAT – AAL-2016-023

60

warning <type> <message>

Signals a warning to the client. The following warning types exist:

1: No motor connected?

2: No bottle inserted?

3: Motor blocked?

4: Device busy (e.g. when already dispensing on another channel)

event <type> <channel>

Signals an event of type at the specified channel.

Available types:

pumped: one pump action took place on the specified channel

6.4 Relevance/Reuse-potential outside GREAT
The developed scent module can be easily used within Intefox powered smart
buildings, but also allows for easy integration into various other smart building
middleware systems, due to its lightweight and open protocol.

7. Sensors

7.1 PIR Sensor

The PIR sensor is use for motion detection with a simple Boolean value, either the
sensor detects moving persons or not. Changes to this state are communicated via
EnOcean interface to the Intefox controller and will be logged for further analysis.
See Table 11 for the specification of the sensor used.

Motion detection: Standard Thermokon PIR EnOcean, battery powered

Manual switches: Standard EnOcean rockers

Table 11: Thermokon "EasySens" SR-MDS BAT specification

Vendor Thermokon Sensortechnik GmbH (Germany)
Series EasySense
Type SR-MDS BAT
Technical design Wireless
Wireless technology EnOcean ISO/IEC 14543-3-10

GREAT – AAL-2016-023

61

Radio frequency 868,3 MHz
Functions Motion detection and brightness

measurement
Motion detection Passive infrared
Detection area 360°; 105° conical (ceiling installation)
Detection radius (2,5 m room height) 3,25 m
Power source 3 x Battery 3,6V 1/2 AA LS14250
Brightness (Accuracy) 0-510 Lux (+/- 30 Lux)
Sleep time interval (modified) 1s – 1000s (for GREAT set to 1 second)

7.2 Biovotion Everion Sensor

The Everion device will be worn by one caregiver at each field test location. The
device is worn at the upper arm and can measure either raw data and/or vital
parameters. The raw data mode produces a huge amount of data and is used only
for research and development purposes. The vitals parameters are calculated by
functions on the sensor device itself and cause less data and traffic to handle.
Currently the following vitals can be measured and streamed with a frequency of
1Hz:

• Heart rate*
• Blood Oxygenation or SPO2*
• Skin temperature*
• Skin blood perfusion*
• Steps / Motion*
• Blood pulse wave
• Heart Rate Variability
• Activity
• Respiration Rate
• Energy Expenditure
• Electrodermal activity/ galvanic skin response
• Barometric pressure

*) clinical grade

Since we are mainly interested in stress detection, the company did implement a
stream to gather the IBI (Inter-Beat-Interval in ms) as shown Figure 27. The IBI is used to
calculate the HRV (Heart Rate Variability) and the HRV itself is one parameter to
detect stress.

GREAT – AAL-2016-023

62

Figure 27: Heart Inter-Beat-Interval

7.3 Stress detection

For the stress index calculation, we rely on results from a past research project where
individual calibrations were made during a learning phase. These individual
adaptions were based on personal feedbacks of the test persons. This will be missing
in this project and we must analyse how the quality will be influenced.

There are no standard values or threshold recommendations for some physiological
parameters (esp. heart rate variability HRV). The approach from earlier projects to
identify individual ranges between low and high stress based on personal user
feedback is not possible within the GREAT setup. We need to develop algorithms to
identify stress thresholds based on historical data und on smart combinations of
additional data based on analytical approaches and data mining approaches (e.g.
plausibility calculations, combination physiological data with PIR data, time of the
day, accelerometer activity profiles etc.).

An additional challenge in this project will be to find the shortest timeframe with
enough data to allow a qualitatively good detection of stress. Figure 28 depicts stress
timeframes of 1 hour during the day. In our feedback loop we might continuously
measure and calculate the relative stress of the caregiver:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	ℎ𝑖𝑔ℎ𝑠𝑡𝑟𝑒𝑠𝑠	𝑤𝑖𝑡ℎ𝑖𝑛	𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒 =
stress index values > 2

stress index values

GREAT – AAL-2016-023

63

Figure 28: Stress index values and 1-hour phases

7.4 Architecture

Customers and users of the Everion device use an App (Android or iOS) to receive
and analyze vital data. For our purpose, we must further process the data and can
therefore not use this software directly. For our purpose, we use software provided by
Biovotion for research and development tasks. One is the VSM tool to configure the
sensor and another one is the Streamer tool to continuously stream data.
Unfortunately, both tools are only available for Windows. To keep costs low and to fit
into the hardware family used within the GREAT system we tried several setups with
the raspberry pi as the hardware device receive streamed data from the Everion
sensor. The most successful option was to use an Android version (Emteria) for the
raspberry pi and to adapt the Android app of Biovotion. The source code was
provided by Biovotion and first adaption were successful. But for a complete
adapted software version to many development tasks were left. Therefore, we did
decide to freeze these efforts and continue with the Intel Compute Stick version and
Windows 10 home as shown in Figure 29.

GREAT – AAL-2016-023

64

Figure 29: Everion sensor setup

7.5. Gathering vital data (test phase 1)

In a first test phase, we just gather the vital data (1) for further analysis.

 Figure 30: PC Tool VSM1 pairing with sensor

GREAT – AAL-2016-023

65

7.5.1 Setup

Follow these steps to initialize the Everion for vital parameter measurements and
streaming.

1. Put the Everion device on the charger
2. Connect the Bluetooth dongle from Biovotion with the PC
3. Start the PC Tool VSM1
4. Start scanning the COM port belonging to the dongle
5. The device with its MAC address and the connection signal strength should

appear in the list as shown in Figure 30. Select the sensor and connect.
6. Under the menu item Device Parameter, the sensors configuration can be

changed or just read. The most important parameter is the algo mode. The
following modes are available:

0=VITAL MODE (Light Skin Mode)
1=VITAL_CAPPED_MODE (SPO2)
2=HR_ONLY_MODE (Dark Skin Mode)
4=RAW_DATA_VITAL_MODE
5=RAW_DATA_HR_ONLY_MODE
6=SELF_TEST_MODE
7=RAW_DATA_OFF_MODE
8=RAW_DATA_FAST (64 Hz)
9=MIXED_VITAL_RAW
10=VITAL_MODE_AUTO_DATA
11=GREEN_ONLY_MODE (Battery Saving Mode)
12=RAW_DATA_FIX_CURRENT
13=SHORT_SELF_TEST_MODE
14=MIXED_VITAL_RAW_SILENT
Depending on the algo mode the memory on the device is restructured.
Therefore, this might take around a minute. The modes differ regarding the
data measured and collected. For our use case we use the mode 0 (vital
mode resp. light skin mode).

Galvanic skin response (GSR_ON) shall be set to 1.

The Table 12 lists the vitals measured and streamed in algo mode 0.

7. Close PC Tool VSM1
8. Open Streamer tool and set the configuration as depicted in
9. Close the tool or run the streamer if you want to start the measuring

GREAT – AAL-2016-023

66

Table 12 Vitals of light skin algo mode
St

re
am

Le
n

Ty
pe

C
ou

nt
er

Tim
es

ta
m

p

 0 1-4 5-8 9 10 11 12 13 14 15 16 17 18

Algo1 19 9 T(u) HR(u) HRQ(u) SpO2
(u)

SpO2Q
(u)

PI Act.
Class

Act. Act.
Class
Q

Step
(u)

BPW(u)

Algo2 15 10 C(u) T(u) HRV(u) HRV Q (u) RR
(u)

RR Q
(u)

Energy
(u)

Energy
Q (u)

Raw
board

19 17 C(u) T(u) Impedance
low byte
(u)

Impedance
high byte
(u)

Local
Temp

Local
Temp

Obj
Temp

Obj
Temp

Bar.
Temp

Bar.
Temp

m
bar

m
bar

IPI DB 10+
N*2

22 C(u) T(u)

Table 13: Value specifications

Name Def Dat
a
Typ
e

Byte
s

min
(receive
d)

max
(receive
d)

[offset;
]conversi
on factor

Description

Heart Rate
value
qualit
y

uint8
uint8

1
1

30
0

240
100

1
1

[Bpm]
[%]

SpO2
value
qualit
y

uint8
uint8

1
1

60
0

100
100

1
1

[%]
[%]

Blood Pulse
Wave

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1/50
1

without units
[%]

Perfusion
Index

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1/50
1

[% swing]
[%]

Activity/Moti
on

value uint8 1 0 255 100/255 without units

Activity
Classification

value
qualit
y

uint8
uint8

1
1

0
0

255
100

enum
1

undefined
0 resting 1
walking_fla
t 2
running_flat
3
biking_flat
4
walking_up
5

GREAT – AAL-2016-023

67

running_up
6 biking_up
7 rowing 8
other 9
biking 10
running 11
walking 12

Steps value uint8 1 0 255 1 [steps/secon
d]

Energy
Expenditure

value
qualit
y

uint8
uint8

1
1

0
0

255
100

2
1

[cal/s]
not
impl

HRV
value
qualit
y

uint8
uint8

1
1

0
0

255
100

1
1

[ms] (rMSSD)
[%]

Respiration
Rate

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1
1

[Bpm]
[%]

GSR-Sensor value
[Impedanc
e]

uint1
6

2 0 65535 1/3000 ampl[kOhm]

Inter Pulse
Interval (IPI)

value

uint1
6
B12-
15
B0-11

0
0

15
4095

100/15
1

Quality value
[%]
Time in [ms]

The Inter Pulse Interval (IPI) value is a 2-byte value whereas the first 4 bits provide the
quality and the left 12 bits the interval in milliseconds.

Example:

Entry in CSV data file:

22,240840,2017/12/08 22:53:31,,62333,
22,240841,2017/12/08 22:53:31,,62382,
22,240842,2017/12/08 22:53:31,,58281,

Leads to the following IBI values

62333 : IPI_Q 15 / IPI 893 mS
62382 : IPI _Q 15 / IPI 942 mS
58281 : IPI _Q 14 / IPI 937 mS

The sum over all IPI values of one day should always be 86400 seconds. The
timestamp is set only once for each page therefore the counter should be
considered for the order.

GREAT – AAL-2016-023

68

Table 14: Quality value specification

0 No IPI values detected, the time will be
filled artificially to reach the 86400
seconds over a day.

1-7 Quality not sufficient (equal to the <50
quality values of vitals)

8-15 Quality is good

7.5.2 Pairing malfunction tipps

If the device does not appear in a list of the PC Tool VSM1 or the Streamer, then
close the software, remove the dongle and plug it in again. This causes a reset of the
dongle.

If connection problems receide, it might be due to a pairing problem. A pairing issue
arises also, if the device was connected to a smartphone and shall be connected to
the PC or visversa. In all this case unpair the device with the following steps (all data
will be deleted):

1. Put the device on charger (If it is on the charger already, remove it, wait until

the device vibrates twice and put the device on the charger again)

2. Wait, until the blue led is off (now you have 30 seconds to proceed with step 3)

3. Press the button until the device vibrates (as on the picture below)

4. Remove the finger

5. First, a double vibrate indicates that the unpairing was successful. (If there is no
double vibration repeat the steps 1-4), then data deletion is executed. It will
take approx. 40 seconds until your able to reconnect with a mobile device.

7.5.3 Run data gathering

The measuring of vital data can be started with the Streamer tool:

GREAT – AAL-2016-023

69

1. Start the tool and open the settings.
2. Pair (connect) it with the sensor by selecting the correct COM port and

pressing the green arrows of the device until the device MAC address
appears and is selectable.

3. Save settings
4. Then start measuring

5. Check if the pairing and streaming start was successful

6. Every time the device is worn at the upper arm, the measurement continues

and the tool streams the values into a file in the users documents and VSM
data folder.

Data file example:

9,137277,2018/02/22 15:36:49,,75,82,60,0,10,1,2,98,0,65,
10,137277,2018/02/22 15:36:49,,56,53,16,83,16,100,
17,137277,2018/02/22 15:36:49,,231,219,3028,2978,2950,9285,
22,219684,2018/02/22 15:33:48,,62315,

The filename follows the pattern as shown in Figure 31. The device id follows
the pattern VSM1-<MAC-Adress>.

7. Create a Windows task to run the upload batch file every evening. The files of
the day will be zipped and uploaded for further analysis to the cloud server of
FHV.

uplodNewFiles.bat

forfiles /s /m "*.txt" /d %date% /c "cmd /c 7z a -tzip @FNAME.zip @PATH"
for /r %%f in (*.zip) do (
 curl -v -F "greatUserID=great" -F "greatPassword=<password>" -F
"upfile=@%%f"
https://uct.labs.fhv.at/glight/livedata/great/uploadBiovotionFiles.php
)
del /s *.zip

Precondition: 7zip tool and curl installed.

GREAT – AAL-2016-023

70

Figure 31: Data file structure

7.5.4 High stress triggers (testphase 2)

The collectd biodata will be analyzed together with the systems log files and
feedbacks given by the caregivers. We assume to derive a pattern for the stress
dedection and possible triggers to provide a suggestion for interventions to the
caregivers.

The stress events or triggers shall be sent to the intefox controller for further
dispatchment over the user interface. To allow a continuous measurement and stress
calculation, we wrote a small Java program to constantly read the vitals from the
files created by the Biovotion Streamer tool (see Figure 31).

GREAT – AAL-2016-023

71

8. User-Interface for Control

For the functional testing period a remote-control tool was created based on the
existing Intefox mobile app that’s available for iOS and Andorid devices. The
configuration was created to allow for an easy control of the separate
light/scent/sound-modules.

Figure 32 shows the main menu, the scent-, and sound-module offering control for
starting an activation or relaxation session.

Figure 32: Screenshots of the main menu, the scent-, and sound-module offering control for starting an
activation or relaxation session.

Figure 33 shows the control page for the light. When the light is switched on without
further action, a biodynamic light is applied throughout the day. The interface allows
to choose activation or relaxation interventions, as well as predefined light scenes for
quickly applying a norm light or a scene fitted for watching TV.
The second screen shows the status of the PIR sensor, delivering brightness values (in
lux) and motion status.

Using this remote interface, the individual components could be controlled manually,
allowing for testing of the individual components in a typical setting.

GREAT – AAL-2016-023

72

Figure 33: Screenshots of the light control page and the status view for the motion detector.

9. Outlook

For the field tests, an easy to use end user interface for controlling the system will be
developed as an alternative to the existing Intefox mobile app. It will be based on
standard technologies like HTML/JavaScript/CSS and will be delivered in a native
app container, to allow for features like Push Notifications. Besides control
functionality, also a user feedback option to help the learning system will be
implemented.

For adjusting light interventions on an individual basis, a webbased front end will be
developed, where new versions of intervention curves can be defined. The system
will then automatically fetch the most recent definition from the server. A similar
system is planned for the sound- and scent-components. These scheduled plans form
the basis for an automated room ambience system.

The backend will be extended to perform daily analysis of the system’s use and
behaviour, and calculate statistics to generate individualized time- and effects
profiles, which are the basis for the automatic room ambience system. An adaptive
recommendation system that genereates suggestions for users to apply certain
stimuli based on live data and history (embedded in these profiles) will be
developed.

GREAT – AAL-2016-023

73

A convenient and secured web-based export option for the data gathered will be
created for project members, to perform additional analysis already during the field
test period.

Descriptions of these systems will be available in Deliverable D2.4.

GREAT – AAL-2016-023

74

10. References
Light:

[1] Lighting concept based on literature search see D1.1

Scent and Sound:

[2] AGÖF (2013). Orientierungswerte für flüchtige organische Verbindungen in der
Raumluft (Aktualisierte Fassung November 2013), Online available: 30.11.2017,
URL: http://www.agoef.de/orientierungswerte/agoef-voc-
orientierungswerte.html

[3] Deutsches Umweltbundesamt (2007). Gesundheit und Umwelthygiene -
Richtwerte für die Innenraumluft. Online available: 30.11.2017, URL:
http://www.umweltbundesamt.de/gesundheit/innenraumhygiene/richtwerte-
irluft.htm

[4] G. Ohloff (1990). Riechstoffe und Geruchssinn. Springer-Verlag, Berlin
Heidelberg New York.

[5] V. Heitmann (2008). Teuflische Düfte. Online available: 30.11.2017. URL:
https://www.forum-essenzia.org/downloads/080305daab2.pdf

Sensors:

[6] Wahl, F., Milenkovic, M., & Amft, O. (2012, December). A distributed PIR-based
approach for estimating people count in office environments. In
Computational Science and Engineering (CSE), 2012 IEEE 15th International
Conference on (pp. 640-647). IEEE.

[7] Zappi, P., Farella, E., & Benini, L. (2007, September). Enhancing the spatial
resolution of presence detection in a PIR based wireless surveillance network.
In Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE
Conference on (pp. 295-300). IEEE.

[8] Luo, Xiaomu; Guan, Qiuju; Tan, Huoyuan; Gao, Liwen; Wang, Zhengfei; Luo,
Xiaoyan (2017): Simultaneous Indoor Tracking and Activity Recognition Using
Pyroelectric Infrared Sensors. In: Sensors (Basel, Switzerland) 17 (8). DOI:
10.3390/s17081738.

[9] Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto;
Cazzoli, Dario et al. (2015): Evaluation of Three State-of-the-Art Classifiers for
Recognition of Activities of Daily Living from Smart Home Ambient Data. In:
Sensors (Basel, Switzerland) 15 (5), S. 11725–11740. DOI: 10.3390/s150511725.

[10] Sereda, A., Moreau, J., Boulade, M., Olivéro, A., Canva, M., & Maillart, E.
(2015). Compact 5-LEDs illumination system for multi-spectral surface plasmon
resonance sensing. Sensors and Actuators B: Chemical, 209, 208-211.

GREAT – AAL-2016-023

75

[11] Beyer, C., & Ernib, D. (2014). Accurate Multiscale Skin Model Suitable for
Determining the Sensitivity and Specificity of Changes of Skin Components.
Computational Biophysics of the Skin, 353.

[12] Ulrich Reimer; Emanuele Laurenzi; Edith Maier; Tom Ulmer (2017): Mobile Stress
Recognition and Relaxation Support with SmartCoping: User-Adaptive
Interpretation of Physiological Stress Parameters Hilton Waikoloa Village,
Hawaii, USA, January 4-7, 2017. In: 50th Hawaii International Conference on
System Sciences, HICSS 2017, Hilton Waikoloa Village, Hawaii, USA, January 4-
7, 2017: AIS Electronic Library (AISeL). Online verfügbar unter
http://aisel.aisnet.org/hicss-50/hc/apps_for_health_management/5.

[13] Reimer, Ulrich; Emmenegger, Sandro; Maier, Edith; Zhang, Zhongxing;
Khatami, Ramin (2017): Recognizing Sleep Stages with Wearable Sensors in
Everyday Settings. In: Proceedings of the 3rd International Conference on
Information and Communication Technologies for Ageing Well and e-Health.
3rd International Conference on Information and Communication
Technologies for Ageing Well and e-Health. Porto, Portugal: SCITEPRESS -
Science and Technology Publications, S. 172–179.

GREAT – AAL-2016-023

76

11. List of Figures

Figure 1: GREAT Components Overview, Source: GREAT consortium. 7	
Figure 2: GREAT Distributed System Overview, Source: GREAT consortium. 8	
Figure 3: Distributed GREAT installations connected over VPN. 9	
Figure 4: OSGi Architecture Diagram, Source: OSGi Alliance,
https://www.osgi.org/developer/architecture .. 10	
Figure 5: Screenshot of the Intefox configuration software showing connections
between individual elements. .. 11	
Figure 6: Basic architecture of the foxcore server ... 16	
Figure 7: fox.configurator, example of adding a new light object 17	
Figure 8: Online bundle manager .. 18	
Figure 9: Basic structure of the event logging architecture .. 18	
Figure 10: Select the created event logger and edit the properties (URL and Context)
.. 20	
Figure 11: Properties of the event logger service ... 20	
Figure 12: In our example, the 'Temperature' output of all 'Temperature sensors' will be
logged, even if they are being created later. ... 22	
Figure 13: Example login request ... 27	
Figure 14: Example description request .. 29	
Figure 15: Example structure request ... 31	
Figure 16: Example long poll request with no changes ... 32	
Figure 17: Example long poll request with changes .. 32	
Figure 18: Example cmd request to switch two lighs on .. 33	
Figure 19: Example biodynamic light definition ... 34	
Figure 20: Example: Activation Light 'cue' definition ... 35	
Figure 21: Example: Calming light 'cue' definition ... 35	
Figure 22: Configuration of the Light curve object in conjunction with the light device
.. 36	
Figure 23: Communication between the Intefox music module extension and the
sound module. ... 42	
Figure 24:The available connections for the music module extension for the Intefox
system and its parameter settings. .. 47	
Figure 25: Integration of the scent module into the GREAT controller system based on
Intefox. ... 55	
Figure 26: Input and output events (left) and parameter settings (right) of the scent
module extension. ... 57	
Figure 27: Heart Inter-Beat-Interval .. 62	
Figure 28: Stress index values and 1-hour phases ... 63	
Figure 29: Everion sensor setup ... 64	
Figure 30: PC Tool VSM1 pairing with sensor ... 64	
Figure 31: Data file structure ... 70	
Figure 32: Screenshots of the main menu, the scent-, and sound-module offering
control for starting an activation or relaxation session. ... 71	

GREAT – AAL-2016-023

77

Figure 33: Screenshots of the light control page and the status view for the motion
detector. ... 72	

12. List of Tables
Table 1: Login Parameters ... 26	
Table 2: Request object types (t) ... 28	
Table 3: Request values (v) ... 28	
Table 4: Command (cmd) parameters ... 33	
Table 5: Description of input events of the music module extension. 47	
Table 6: Description of output events of the music module extension. 48	
Table 7: Description of paramters of the music module extension. 49	
Table 8: Description of input events of the scent module extension. 57	
Table 9: Description of output events of the scent module extension. 57	
Table 10: Description of output events of the scent module extension. 58	
Table 11: Thermokon "EasySens" SR-MDS BAT specification .. 60	
Table 12 Vitals of light skin algo mode .. 66	
Table 13: Value specifications .. 66	
Table 14: Quality value specification .. 68	

