
GREAT – AAL-2016-023

1

Get Ready for Activity – Ambient Day Scheduling
with Dementia

Field tested software components

Deliverable Name: D2.4 – Field tested software components

Deliverable Date: 31.01.2020

Classification: Report / public

Authors: Quirino Nardin, Walter Ritter, Tom Ulmer, Sandro
Emmenegger, Beat Sauter,

Document Version: V2.0

Project
Coordinator:

University of Applied Sciences Vorarlberg (FHV), Austria

GREAT – AAL-2016-023

2

Project Partners: Bartenbach GmbH
Fachhochschule St. Gallen
Apollis – Institut für Sozialforschung und Demoskopie O.H.G.
Intefox GmbH
Altersheim Stiftung Griesfeld
EMT – energy management team AG
CURAVIVA Schweiz
Tirol Kliniken GmbH – Hall

The project GREAT no AAL-2016-023 is funded through the
AAL program of the EU

Preface

This document forms part of the Research Project “Get Ready for Activity – Ambient

Day Scheduling with Dementia (GREAT)” funded by the AAL 2016 “Living well with

dementia” funding program as project number AAL-2016-023. The GREAT project will

produce the following Deliverables:

D1.1 Medical, psychological, and technological framework

D2.1 Applicable hardware components

D2.2 Applicable software components

D2.3 Field tested hardware components

D2.4 Field tested software components

D3.1 Implementation report

D3.2 Field test report

D4.1 Communication strategy

D4.2 Stakeholder management report

D5.1 Report on market analysis

D5.2 Dissemination plan

D5.3 Final business plan

GREAT – AAL-2016-023

3

The GREAT project and its objectives are documented at the project website

https://uct-web.labs.fhv.at. More information on GREAT and its results can also be

obtained from the project consortium:

Prof. Dr. Guido Kempter (project manager), University of Applied Sciences Vorarlberg

(FHV), Phone: + 43 5572 792 7300, Email: guido.kempter@fhv.at

Hermann Atz, Institute for Social Research and Opinion Polling OHG (APOLLIS), Phone:

+39 0471 970115, Email: hermann.atz@apollis.it

Mag. Wilfried Pohl, Bartenbach GmbH, Phone: +43-512-3338-66, Email:

wilfried.pohl@bartenbach.com

Quirino Nardin, Intefox GmbH, Phone: +43 699 1900 8889, Email: info@intefox.com

Dr. Marksteiner Josef, Tirol Kliniken Hall, Phone: +43 (0)50504 33000, Email:
josef.marksteiner@tirol-kliniken.at

Mag. Tom Ulmer, University of Applied Sciences St. Gallen (FHS), Phone: +41 71 226 17

41, Email: tom.ulmer@fhsg.ch

Beat Sauter, energy management team ag (emt), Phone: +41 71 660 02 86, Email:

beat.sauter@emt.ch

Anna Jörger, CURAVIVA Schweiz, Phone: +43 (0)31 385 33 45, Email:

a.joerger@curaviva.ch

Cornelia Ebner, Stiftung Griesfeld, ÖBPB – APSP, Phone: +39 (0) 471 82 63 43, Email:

cornelia.ebner@griesfeld.it

GREAT – AAL-2016-023

4

Content

1. Great Prototype Software Components ... 7

1.1. System Overview .. 7

1.2. System Architecture... 8

2. Controller .. 9

2.1. Intefox Middleware .. 9

2.2. Wireless Access Point, Router... 11

2.3. OpenVPN Client ... 15

3. Intefox - Middleware ... 16

3.1. Architecture and Components (fox.core) ... 16

3.2. Configurator Software ... 16

3.2.1. Online Bundle Manager ... 17

3.3. Logging and Data Access Interface ... 18

3.3.1. Event Logger Configuration .. 19

3.3.2. Log settings (Selecting the events to be logged) 21

3.3.3. Data Access Interface.. 22

3.3.4. Database Structure ... 26

3.4. Controller & Visualization interface .. 30

3.4.1. LiveCycle of a Visualization Client ... 30

3.4.2. Login ... 30

3.4.3. Request Object Descriptions ... 31

3.4.4. Request Structure ... 34

3.4.5. LongPoll Request .. 36

3.4.6. Send Commands ... 37

4. Light ... 38

4.1. Biodynamic Light Extension Bundle .. 38

4.1.1. Light Curve Object Description .. 40

4.1.2. Protocol Data Exchange between Light and Controller 44

4.2. DATA: Controller to Light... 44

4.3. Statusresponse from Light to Controller ... 45

4.4. Teach In .. 45

4.5. Definition Factory Default ... 46

4.6. Luminaire .. 46

5. Sound Module .. 48

GREAT – AAL-2016-023

5

5.1. Image Preparation... 49

5.1.1. Basics .. 49

5.2. Shairport-Support (for AirPlay functionality, optional) .. 50

5.3. WLAN Setup ... 51

5.4. Music Module Extension Bundle .. 52

5.5. Sound Module Protocol Description .. 56

5.5.1. Commands from Client to Server: .. 57

5.5.2. Commands from Server to Client: .. 60

5.6. Relevance/Reuse-Potential outside GREAT ... 61

5.7. Sound Concept .. 62

6. Scent Module.. 66

6.1. Image Preparation... 67

6.2. Scent Module Extension Bundle .. 67

6.3. Scent Module Protocol Description ... 70

6.3.1. Commands from Client to Server: .. 70

6.3.2. Commands from Server to Client: .. 71

6.4. Relevance/Reuse-Potential outside GREAT ... 72

7. Enocean Repeater ... 73

8. Sensors .. 75

8.1. PIR Sensor ... 75

8.2. Biovotion Everion Sensor ... 75

8.3. Stress Detection .. 76

8.3.1. Architecture .. 77

8.4. Gathering Vital Data (test phase 1) ... 78

8.4.1. Setup... 79

8.4.2. Pairing Malfunction Tips .. 82

8.4.3. Run Data Gathering .. 82

8.4.4. High Stress Triggers ... 84

8.4.5. Integration into the GREAT System ... 84

9. User-Interface for Manual Control .. 86

10. GREAT User-Interface ... 88

11. GREAT Manager ... 94

11.1. Curve Editor ... 95

11.2. Schedule Editor ... 96

11.3. Playlist editor .. 100

11.4. Data Download Area .. 101

GREAT – AAL-2016-023

6

12. Automated Control System ... 102

12.1. Measuring stress .. 103

12.2. Machine learning ... 103

12.3. Challenges and coping strategies ... 106

12.4. Implementation .. 108

12.4.1. Feature engineering .. 108

12.4.2. Processing pipeline of the learning system .. 110

12.5. Schedule based operation .. 113

12.6. Rule-Based Recommendations... 114

12.6.1. Processing Rule ... 114

12.6.2. Continuous Adjustment of Variables ... 115

12.6.3. Block diagram and parameters of the control system 116

12.7. Summary and further research ... 117

13. Setup Procedure of the Final GREAT Product ... 119

14. References .. 124

15. List of Figures ... 125

16. List of Tables .. 127

GREAT – AAL-2016-023

7

1. Great Prototype Software Components

1.1. System Overview

The GREAT system should be usable in widely varying environments. Therefore, a
highly modular approach has been chosen. Components like light, sound, and scent
modules can be used individually or in combination with one another. The system
also gathers data from motion detectors and physiology sensors worn by caregivers
to detect potential activity/relaxation levels of persons in a room. The system can be
controlled via a mobile app manually as well as dedicated hardware buttons, that
can be added to the system based on local requirements (see Figure 1 for an
overview).

One important principle of the GREAT system is that users must always be in full
control of the system, meaning that they will always be able to start/stop actions
manually.

Figure 1: GREAT Components Overview, Source: GREAT consortium.

In a first phase, the system gathers data from motion detectors and physiology
sensors as foundation for an analysis of typical patterns. Caregivers are also able to
give their current impression of the patient’s state (e.g. whether they are very relaxed
up to highly activated). During this time caregivers can manually trigger activation-
or relaxation-cycles. For learning purposes, the system logs every activity.
In a second phase, the system recommends to caregivers the triggering of
activation-/relaxation-cycles, when it detects certain situations. The actual triggering
of these cycles however is still up to the caregivers.
By the end of the field tests, the system should have gathered enough data to trigger
activation/relaxation cycles automatically.

GREAT – AAL-2016-023

8

1.2. System Architecture

The GREAT system is comprised of a main controller, light-, scent-, and sound-
modules, sensors for room-based motion activity and physiological data capturing
for selected caregivers, as well as a cloud based storage and configuration layer
(see Figure 2).

Figure 2: GREAT Distributed System Overview, Source: GREAT consortium.

The main component of the GREAT system is the local controller, that acts as a
coordinator among the different other components. It runs an already available
middleware solution for smart buildings control (provided by Intefox) with built-in
support for a wide range of common building automation protocols (e.g. DALI,
EnOcean, KNX,…). The middleware system is also highly extensible to allow for
integration of new components, either based on standard protocols or application
specific ones.

Multiple GREAT systems can be used at the same time in multiple locations, each of
them can be tailored to local requirements.

The controller and the modules are connected over wireless links (EnOcean, WLAN,
optionally Bluetooth LE). A WLAN is provided by the GREAT controller itself to allow for
efficient connection of components. For internet connection, an Ethernet port with

RPi zero w

DAC+ zero

SoundProviderService

Intefox
Controller

trigger sound XX

DataArchiveServiceRuleService

ScentDispenser incl. IAQ
trigger scent XX

Light
trigger lights (RGB)

Motion

Switch

Physiology

Analysis
Module

archive data

new sounds?archive data
new rules?

Enocean

Enocean

Enocean

WLAN

WLAN

Active

App
WLAN

SchedulerService

FH
V

C
lo

ud
Lo

ca
l I

ns
ta

lla
tio

n

WLAN

LightCurveService

GREAT – AAL-2016-023

9

publicly accessible Internet is required. Alternatively, also a USB WLAN adapter can
be used to connect the system to an existing WLAN.

Figure 3: Distributed GREAT installations connected over VPN.

All communication from the controller to the Internet is encrypted. To allow for
remote administration of the system, individual controllers are connected into a
virtual private network, thus not requiring an externally accessible IP-address (see
Figure 3).

2. Controller

The software stack of the GREAT controller is based on the open source Raspbian
Jessie Linux distribution for Raspberry PI single board computers. The three main
software modules of the controller are:

• Intefox Middleware stack for building automation (fox.core)
• Wireless Access Point functionality including routing
• OpenVPN Client for remote management

2.1. Intefox Middleware
The main purpose of the middleware is to hide the details of the individual
component communications und provide unified access to individual
objects/components. In this way, e.g. additional lights could be easily added into
the GREAT system, even if they used some different building automation standard

Controller

Music Scent

Remote
Management

OpenVPN
Server

GREAT Virtual Private Network

GREAT Private WLAN

Internet Gateway

Controller

Internet Gateway

GREAT Private WLAN

... Music Scent ...

▶ ▶

▶

TLS encrypted connections

Controllers provide local WPA2 protected WLAN

No externally accessible IP-Address required

GREAT – AAL-2016-023

10

like KNX or DALI. At the GREAT software layer, they would be treated the same. In
addition to this hardware abstraction layer it also provides a broad list of features
that allow for rapid prototyping (drag & drop configurations), ready-made mobile
apps, and event logging functionalities.

The basic architecture of the Intefox middleware software is based on an OSGi
(originally Open Services Gateway initiative) software layer (see Figure 4).

Figure 4: OSGi Architecture Diagram, Source: OSGi Alliance,
https://www.osgi.org/developer/architecture

By using the OSGi dynamic component architecture, the functionality of the
controller-software can be extended even at runtime. The Intefox system allows for
easy extension of the system by means of so-called bundles. These bundles typically
feature inputs, where they listen for incoming events, and outputs, where they can
send events. So, for example in GREAT, a new bundle for the sound component was
created, that manages encrypted communication with the sound component. It
provides a set of inputs that can be used for controlling the sound module, and a set
of outputs that provide other components with information (e.g. the status of the
sound component).

In the GREAT setup, the Intefox middleware software runs on a Raspbian Linux
operating system, but could be run on other Linux-/macOS- or Windows-based
systems too, if a Java Runtime environment is available.

The configuration of the controller is edited using a graphical configurator software
based on the open source Eclipse rich client platform (RCP) that is available for
multiple platforms (e.g. Linux, macOS, or Windows) (see Figure 5). Connections
between inputs and outputs of modules can be made via drag & drop.

GREAT – AAL-2016-023

11

Figure 5: Screenshot of the Intefox configuration software showing connections between individual
elements.

See the chapter Intefox - Middleware for a more detailed description of relevant
components of the middleware system.

2.2. Wireless Access Point, Router

Each GREAT controller provides its own GREAT wireless network, to allow for easy
connection of WLAN based components or mobile app based remote controls,
independent of the local availability of a WLAN. The GREAT WLAN is an encrypted
WPA2 network for security reasons.

The wireless access point functionality provided by the GREAT controller is built using
the open source packages hostapd and dnsmasq. These packages must be installed
using apt-get, as they are not part of the standard installation of Raspbian.

The hostapd provides the functionality for the actual access point, while dnsmasq is
a light weight DHCP and DNS server and therefore hands out IP addresses to
connected clients.

In the GREAT setup, we use the built in WiFi interface wlan0 as basis for our access
point. To avoid that this interface is being used otherwise, it needs to be denied in
the /etc/dhcpcd.conf above any other interface lines.

GREAT – AAL-2016-023

12

denyinterfaces wlan0

The actual interface definition then takes place in the /etc/network/interfaces file:

allow-hotplug wlan0

iface wlan0 inet static

 address 172.24.1.1

 netmask 255.255.255.0

 network 172.24.1.0

 broadcast 172.24.1.255

This defines a static IP address of the access point interface of 172.24.1.1. In a next
step the hostapd is configured to provide a GREAT wireless network. Configuration of
this network happens in /etc/hostapd/hostapd.conf

The typical config for GREAT looks like

This is the name of the WiFi interface we configured above
interface=wlan0

Use the nl80211 driver with the brcmfmac driver
driver=nl80211

This is the name of the network
ssid=GREAT

Use the 2.4GHz band
hw_mode=g

Use channel 6
channel=6

Enable 802.11n
ieee80211n=1

Enable WMM
wmm_enabled=1

Enable 40MHz channels with 20ns guard interval
ht_capab=[HT40][SHORT-GI-20][DSSS_CCK-40]

Accept all MAC addresses
macaddr_acl=0

Use WPA authentication
auth_algs=1

Require clients to know the network name
ignore_broadcast_ssid=0

Use WPA2
wpa=2

Use a pre-shared key
wpa_key_mgmt=WPA-PSK

The network passphrase
wpa_passphrase=**********

Use AES, instead of TKIP
rsn_pairwise=CCMP

GREAT – AAL-2016-023

13

This basically sets up a WPA2 wireless network on the 2.4 GHz band with a network
SSID of GREAT.

In the /etc/dnsmasq.conf file the details of the DHCP part of dnsmasq are
configured. Specifially the DHCP range, name servers, interfaces and listen addresses
are defined here. The specific settings used in GREAT are:

domain-needed

bogus-priv

server=8.8.8.8

interface=wlan0

listen-address=172.24.1.1

bind-interfaces

dhcp-range=172.24.1.50,172.24.1.150,12h

as well as mappings of hostnames for up to 5 sound- and scent-components.

dhcp-host=greatmusic,172.24.1.2,infinite

dhcp-host=greatscent,172.24.1.3,infinite

dhcp-host=greatmusic2,172.24.1.4,infinite

dhcp-host=greatscent2,172.24.1.5,infinite

dhcp-host=greatmusic3,172.24.1.6,infinite

dhcp-host=greatscent3,172.24.1.7,infinite

dhcp-host=greatmusic4,172.24.1.8,infinite

dhcp-host=greatscent4,172.24.1.9,infinite

dhcp-host=greatmusic5,172.24.1.10,infinite

dhcp-host=greatscent5,172.24.1.11,infinite

…

This allows for creating port forwarding rules to specific components for remote
management tasks.

A final configuration step involves the iptables routing software. Here traffic from the
eth0 interface is forwarded to the wlan0 interface. The routing information is loaded
from a persistence file in the rc.local phase.

Excerpt of the iptabes-save persisted file that is loaded on startup:

Generated by iptables-save
*filter
:INPUT ACCEPT [4823:503443]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [3401:1416793]
-A FORWARD -i eth0 -o wlan0 -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -i wlan0 -o eth0 -j ACCEPT
COMMIT
Completed on Fri Aug 18 09:09:28 2017
Generated by iptables-save v1.4.21 on Fri Aug 18 09:09:28 2017

GREAT – AAL-2016-023

14

*nat
:PREROUTING ACCEPT [19:2901]
:INPUT ACCEPT [16:2709]
:OUTPUT ACCEPT [4:316]
:POSTROUTING ACCEPT [0:0]
-A PREROUTING -p tcp -m tcp --dport 33101 -j DNAT --to-destination 172.24.1.2:22
-A PREROUTING -p tcp -m tcp --dport 33102 -j DNAT --to-destination 172.24.1.3:22
-A PREROUTING -p tcp -m tcp --dport 33103 -j DNAT --to-destination 172.24.1.4:22
-A PREROUTING -p tcp -m tcp --dport 33104 -j DNAT --to-destination 172.24.1.5:22
-A PREROUTING -p tcp -m tcp --dport 33105 -j DNAT --to-destination 172.24.1.6:22
-A PREROUTING -p tcp -m tcp --dport 33106 -j DNAT --to-destination 172.24.1.7:22
-A PREROUTING -p tcp -m tcp --dport 33107 -j DNAT --to-destination 172.24.1.8:22
-A PREROUTING -p tcp -m tcp --dport 33108 -j DNAT --to-destination 172.24.1.9:22
-A PREROUTING -p tcp -m tcp --dport 33109 -j DNAT --to-destination 172.24.1.10:22
-A PREROUTING -p tcp -m tcp --dport 33110 -j DNAT --to-destination 172.24.1.11:22
-A POSTROUTING -o eth0 -j MASQUERADE
-A POSTROUTING -p tcp -m tcp --dport 22 -j MASQUERADE
COMMIT
Completed

These rules also include network address translation to allow for direct reachability of
the sound- and scent components over SSH for remote maintenance. Note that this
will not be part of the final GREAT product – there, only the main controller will be
directly accessible from the maintainance VPN for reducing potential for security
issues.

Since in some situations there are no wired network connections available, the
GREAT controller also supports connecting to an existing WLAN via a USB WLAN stick
mounted as interface wlan1. When a wlan1 interface is becoming available, a
wlan1_up script adds rules to iptables to route from wlan1 to wlan0 and vice versa.
When the stick is removed and the wlan1 interfaces is down, a wlan1_down script,
removes the rules dynamically again.

Connections via WLAN tend to be prone to disconnecting. Therefore, a script checks
every 5 minutes via cron, if the WLAN connection is still functional and if not, tries re-
establishes the connection to the interface.

WLAN=wlan1
wlanExists=`ifconfig | grep ${WLAN}`
if [$? -eq 0]
then
 router= ìp route | awk '/default/ {print $3;exit;}'`
 ping -I ${WLAN} -c2 $router > /dev/null
 #echo $router

 if [$? != 0]
 then
 ifdown --force ${WLAN}
 /bin/kill -9 `pidof wpa_supplicant`
 ifup --force ${WLAN}
 fi
fi

The onsite WLAN credentials can be easily set using a wpa_supplicant.conf file, that
is placed into the root of the boot partion of the Raspberry PI microSD Card. The
system then moves this file into the proper place automatically
(/etc/wpa_supplicant/) and uses these credentials. Typically, this text file includes the
information:

GREAT – AAL-2016-023

15

country=AT
ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
network={
 ssid="networkName"
 psk="networkPassword"
 key_mgmt=WPA-PSK
}

Instead of directly supplying a password, also the actual key can be supplied. This
key for a given SSID can be generated using the wpa_passphrase command on the
Raspberry.

2.3. OpenVPN Client

Since the GREAT prototypes will be used in various places in Austria, Italy and
Switzerland, it’s important to be able to update the systems via a remote
connection. However, often it’s not possible to get an externally reachable IP
address at the institutions. To avoid the need of an externally reachable IP address,
the GREAT controller connects itself into a remote management virtual private
network hosted by the FHV (see Figure 3) automatically when a network connection
becomes available. On the client, this is achieved by installing the openvpn-
package and passing a client specific configuration (typically an ovpn-file, but this
needs to be renamed to conf) to the service. It is then enabled by calling for
example:

sudo systemctl enable openvpn@clientConfig1

The virtual private network is implemented using the open source VPN server
OpenVPN. It is configured to apply TLS encryption to connections. Each GREAT
controller and maintainer computer have their own certificates. Only clients with a
valid certificate can connect to this network. The VPN network is configured to use
TCP Port 443 for communication to avoid firewall issues on location.

In case of a remote management task, the maintainer connects a computer to the
VPN and can then access GREAT controllers using their hostnames via SSH, as long as
the controllers are connected to the Internet. The main controllers listen for SSH
connections on port 33100. Submodules can then either be reached via SSH
connections originating from the controller, or via port forwarding on the controller
directly from the maintainer’s computer.

GREAT – AAL-2016-023

16

3. Intefox - Middleware

3.1. Architecture and Components (fox.core)

The fox.core server runs on a Java runtime and is using the OSGi standard to load
and unload bundles during runtime and provides RESTful interfaces for configuration,
control and visualization clients.

Figure 6: Basic architecture of the foxcore server

Figure 6 shows the basic architecture of he fox.core server, illustrating the layered
model to provide abstraction for different technologies and interfaces.

3.2. Configurator Software

The fox.configurator is used to configure and manage fox.core servers. The
connection is established via TCP/IP and can therefore be used to either connect
locally or remotely. Figure 7 shows the example of inserting a new light object into
the system configuration.

GREAT – AAL-2016-023

17

Basic features:

- Managing bundles and updates
- Creating and managing objects
- Bundle activation (licensing)
- Managing configurations
- Server diagnostics
- User management
- Timer and Schedulers management
- Managing Cloud services (AutoBackup, Database, PushNotification, Alexa,

etc)
- Enabling control and visulization interface
- Commissioning
- Live events

Figure 7: fox.configurator, example of adding a new light object

3.2.1. Online Bundle Manager

The online bundle manager is fully integrated into the configurator software.

The bundles are managed through an online sharing platform where it allows a
software developer to upload and share the bundle to others. In that way, it makes it
very easy for everyone to install and update bundles on the controller. Figure 8 shows
the bundle selection screen to extend the functionality of the core system.

GREAT – AAL-2016-023

18

Figure 8: Online bundle manager

3.3. Logging and Data Access Interface

fox.core
event logger

fox.core
event logger

fox.core
event logger

fox.core

Database service

fox database json
interface (https)

Figure 9: Basic structure of the event logging architecture

GREAT – AAL-2016-023

19

Figure 9 illustrates the basic event logging architecture that consists of a database
service backend, as well as event logger objects.

Database Service

The database service is available as a fox.core bundle and is designed to either run
within the same local network or some hosted server on a fox.core based system.

Currently PostgreSQL is supported as database backend. Further database types
might be added, as the need for it arises though.

Event Logger

An event logger processes defined events and sends them to the database service.
It also takes care of buffering events locally, if the remote database service is not
available at the time. It is available as a fox.core bundle and is designed to run on a
fox.core based system.

Multiple instances are allowed on the same controller as well as on different
controllers to send the data to the same database service.

Through the event logger it is also possible to compare the logged values from a
local controller with values from other controllers live in charts views and reports if
they are being logged to the same database.

3.3.1. Event Logger Configuration

Creating the Event logger

First, an event logger object needs to be created. Therefore, select the 'Database
loggers' container within the System tree and select 'Add object'. Figure 10 and
Figure 11 illustrate the process.

GREAT – AAL-2016-023

20

Figure 10: Select the created event logger and edit the properties (URL and Context)

Figure 11: Properties of the event logger service

URL:

If the database runs on the same controller, the URL would be like this:

https://localhost:8080/db

Context:

the database name set in the database service configuration. (e.g. myDBname)

Send interval:

Defines the minimum interval to be used to send the queued data to the database
service.

GREAT – AAL-2016-023

21

Send Buffer:

Defines the buffer size for queueing the data before sending to the database
service.

If the queue is full, the data will be sent immediately.

Discard data older than

Defines, how long the data will be kept in the queue if the data could not been sent
due to any communication error with the database service.

The event logger uses the interface (described in section 'interface') for the data
exchange.

3.3.2. Log settings (Selecting the events to be logged)

With the event logger configuration editor (by double clicking the 'event logger
object) the events can be selected to be logged.

There are 2 ways to select an event:

- Type: all objects of this type will be logged with the defined settings
- Object: single objects will be logged with the defined settings

Figure 12 shows the configuration of an eventlogger to log the temperature output
of all temperature sensors in the system, even if they might be added at a later point
in time.

GREAT – AAL-2016-023

22

Figure 12: In this example, the 'Temperature' output of all 'Temperature sensors' will be logged, even if
they are being created later.

3.3.3. Data Access Interface

The database service offers a REST-based interface to store and retrieve data
as well as to read the logging configuration. Parameters are encoded using
json format.

format: https://localhost:8080/db/<cmd>?params...

cmd: data

writes Event data to the Database

the data is being sent as post data in json format

Description with example data:

https://localhost:8080/db/data

< POST DATA AS JSON>

GREAT – AAL-2016-023

23

cmd: readconfig

retrieves the current foxEvents table with objectIds in json format

parameters:

id database id

coreid if not set, ALL events of all cores will be returned

statistics includes the current amount of data logged of each event

space includes the space being used by the DB and also the free space

cmd: getdata

request data in json format

parameter:

id database id

eid comma separated id's of foxevents (known when previously read from config)

 (or)

objId id of FoxNode object

key the in- or output key depending on dirout

dirout 0 = input key, 1 = output key

from epoch format (milliseconds since 1.1.1970)

to epoch format (milliseconds since 1.1.1970)

dur duration in milliseconds (note: use either 'to' or 'dur')

 (or)

range -->possible values: keyword[,back,count]

 (back = keyword units back, count = range in keyword units,

 e.g. month,6,3 = starting from 6 month's back with a range of 3 months

Possible keywords:

 thishour

 lasthour

 today

 yesterday

GREAT – AAL-2016-023

24

 thisweek

 lastweek

 thismonth

 lastmonth

 thisyear

 lastyear

Extended range-format:

<type-unit>,<starting point relative to now in type units>,<length in type-units>

hour,back,count

 day,back,count

 week,back,count

 month,back,count

 year,back,count

(see examples below)

maxpoints the maximum number of points returned per eventId. Default value = 100

debug if debug parameter is present, the returned values will include additional
information of

 the requested eventId's

units a string based unit map

è example value: K=°C,m/s=km/h
o will return all temperature values as '°C' and all velocity values as

'km/h'

unituser the id of a user object. If the user exists, the unit map will be taken from the
user properties

rangeinfo if rangeinfo parameter is present, the returned values will include the
requested 'from' and 'to' timestamp. This is helpful if the request is done by a
range keyword

GREAT – AAL-2016-023

25

examples:

https://localhost:8080/db/getdata?id=qnhome&eid=3&range=lastweek&debug

--> returns a json with data of object with eventId=3 of last week, also includes
additional debug informations

https://localhost:8080/db/getdata?id=qnhome&eid=3,5&range=month,6,3

--> return a json with data of objects with eventId = 3 and 5 from 6 month back with a
range of 3 months

https://localhost:8080/db/getdata?id=qnhome&objId=7jgbd7kx&key=out&dirout=1&from=14
9898498000&duration=360000

type line (default), sum, day, week, month, year

type sum:

retrievs the total value only plus price if a pricetable is assigned

 example: (analog values)

 sum (value per hour): 345 kWh

 price (through price table) 123,23 EUR

 example: (digital values)

 count (impulses), true count (boolean)

type day:

 retreives the total value of 1 day and 24 hour values

type week

 retreives the total value of 1 week and 7 day values

type month

 retrieves the total value of 1 month and 28-31 day values

type year

 retreives the total value of 1 year and 12 month values

GREAT – AAL-2016-023

26

3.3.4. Database Structure

The fox.core database keeps track of existing configurations and state changes of
registered fox.core-systems. The table structure outlined below is optimized for
efficient access to event values even in large installations.

The foxcores table keeps basic information about controllers like their name or
unique id (see Table 1 for details).

The foxobjects table links individual objects to a specific core object and keeps path
information of the object tree and type.

The foxevents table links events to the originating objects and keeps information
about event-names, ids and value types.

The vals<eventID> table keep track of concrete value changes of specific events
(see Table 2). The value storage is splitt up into individual tables for each event for
more efficient access to specific event-values in large installations. For analog value
types, vals-tables are also generated on the fly for aggregation intervals of 1 minute /
15 minutes / 4 hours / 1 day (see Table 3).

The foxwatch table keeps information about monitoring conditions and valid range
checks for individual foxevents. See Figure 13 for an overview of the relations among
the tables.

Table 1: Configuration tables

foxcores Type Description

 id integer primary key

 coreId varchar fox.core id, bound to the configuration on the controller

 name varchar the given name of the fox.core configuration

 host varchar the local published ip of the fox.core configuration

foxevents Type Description

 id integer primary key

 oid integer the object id, refered to 'foxobjects' table

 dirout boolean event direction: true = output key, false = input key

 key varchar the object key

 type integer 0 = trigger, 1 = boolean, 2 = integer, 3 = double, 4 = text, 5 =
enumeration (integer), 6 = bytes, 7 = long, 8 = float, 9 =
tristate (integer, 0=false, 1=true, 2=undefined)

 unit varchar the unit of the event (null = no unit)

GREAT – AAL-2016-023

27

 agg_ts bigint the timestamp of the last aggregated values

 removed boolean true = the event has been deleted

 wid integer Event watchdog, refered to the 'foxwatch' table

 pid integer assigned pricetable, refered to the 'pricetables' table

 first_ts bitint timestamp of the oldest entry

 last_ts bigint timestamp of the newest entry

 count bigint total count

foxobjects Type Description

 id integer primary key

 objId varchar object id of the object in the configuration of the controller

 name varchar the name of the object in the fox.core configuraton

 objtype varchar the type of the object in the fox.core configuraton

 cid integer the fox.core id (controller), refered to 'foxcores' table

 pathids varchar the object id's of the full path, including the path position

 path varchar the path names of the full path (URL encoded)

 pathtypes varchar the object types of the full path

 pos integer the position of the object in the fox.core configuraton tree

foxwatch Type Description

 id integer primary key

 name varchar the given name of the event watch definition

 upperlimit double the upper limit of the value

 lowerlimit double the lower limit of the value

 maxinterval integer the minimum time in seconds within a value must be
received

GREAT – AAL-2016-023

28

Table 2: RAW value tables

vals<eventid> Type Description

id integer primary key

ts bigint the timestamp in milliseconds (epoch format)

val double the value in the unit as defined in the 'foxevents' table

The raw value tables hold all values received from events.

To better deal with potentially big amouts of data, each event description will create its own
table with the name 'vals' followed by the event id.

Table 3: Aggregated value tables

vals<eventid>_1min

vals<eventid>_15min

vals<eventid>_4hr

vals<eventid>_1day

 id integer primary key

 ts bigint the timestamp of the aggregated value in ms

 vph double the value per hour within the duration (dur)

 dur bigint the duration of the calculated value (vph)

Aggregated value tables are being created to speed up the longterm requests. Values will
be calculated and filled in in realtime after a raw event packet has been received.

Additionally, it is possible, to recalculate the aggregated values from the RAW value table.
(this is necessary for instance after data has been imported)

GREAT – AAL-2016-023

29

Figure 13: Entity relationship diagram for the logging data backend

referencedBy >

foxcores

foxexents

foxobjects

vals<eventID>

vals<eventID>

vals<eventID>

foxwatch

vals<eventID>_1mi
n

referencedBy >

referencedBy >

referencedBy >

referencedBy >

referencedBy >

referencedBy >

GREAT – AAL-2016-023

30

3.4. Controller & Visualization interface

The fox.core system provides an HTTP based interface for connecting visualization
clients to the system so they can control certain features. The following chapters
describe this protocol in detail. For concrete example of a visualization client that
uses this protocol, see the chapter on the GREAT User-Interface.

3.4.1. LiveCycle of a Visualization Client

The typical initialization stages of a visualization client are:

1) Login (retrieves last version id to check if a reload of descriptions is necessary)
2) getDescriptions
3) getStructure (mixed with requested Style)
4) poll (receive Status updates)
5) Send commands asynchronously until the client is terminated

HTTP request, format:

https://host:port/json/session_id/key

The return format is JSON

3.4.2. Login
key: login

Table 4: Login Parameters

user the user name for the visu user
pwd the password for the visu user

note: the login procedure will be changed in future to a more
secure method

style optional: customized style properties for each single object
appid optional – see PushNotification support
devtoken optional – see PushNotification support
id optional – see PushNotification support

GREAT – AAL-2016-023

31

Figure 14: Example login request

3.4.3. Request Object Descriptions
key: descs

Retrieves a description of each object type which is represented in the current visu
configuration for the user logged in. Additionally, the object type and the current
values of each single object will be added at the end.

The JSON reply is splitted in 2 parts:

- descs contains possible commands to send status values returned
o i id of object type (e.g. fox.light, fox.blinds)
o c commands to be send to the core
o s status to be received from the core

§ n display name of the command or status
§ k key of the command or status to be used for identication
§ t value type (see table below)
§ u unit of each value (e.g. %, ms‚ °C)

- objs contains object id and current status values
o i id of the object (unique id per object)
o t object type (this value refers to the id (i) in descs (see Table 5)
o v current values of the object (see Table 6)

GREAT – AAL-2016-023

32

Table 5: Request object types (t)

none Trigger (no value)
1 Boolean (0 = false, 1 = true)
2 Integer (signed value, uses internaly 4 bytes)
3 Double (floating point value, uses internally 8 bytes)
4 String (Text)
5 Enumeration (Integer value)
6 Bytes (starting with 0x, example: 0xa1bb4c83)
7 Long (signed value, uses internally 8 bytes)
8 Float (floating point value, uses internally 4 bytes)
9 Tristate (0 = false, 1 = true, 2 – undefined)

Table 6: Request values (v)

The ‚#’ key refers to the main value of the command or status
<key> If a command or status has more values, sub values are identicated by a key

word

GREAT – AAL-2016-023

33

Figure 15: Example description request

GREAT – AAL-2016-023

34

3.4.4. Request Structure

key: structure

No parameters.

Retrieves the hierarchical structure of the visualization configured for the user logged
in.

JSON key description:

- contains the structure in hirarchical order
o p page id – a page can either be a ‚page’ object or a container

object (room, floor etc).
o r page id – this is a ‚reference container object’ (building, floor,

room)
 which might contain additional pages

o c category id – used to manage style properties in categories
§ l listed objects in category
§ t category type
§ i short id, refers to ‚c’ properties in ‚page’ or container

objects
o o contains additional objects or pages
o n display name for the object or page
o i object id to refer to in previous request ‚objs’
o s style properties (customizable)

GREAT – AAL-2016-023

35

Figure 16: Example structure request

GREAT – AAL-2016-023

36

3.4.5. LongPoll Request

key: poll

No parameters

Retrieves value changes.

Figure 17: Example long poll request with no changes

If no value has changed, the core will respond after 10 seconds with a longpoll
message (see Figure 17).

Figure 18: Example long poll request with changes

When a value got changed, the core will respond immediately with the changed
values (see Figure 18)

JSON key description:

GREAT – AAL-2016-023

37

- values contains the values in order of occurence
o i id of the object which has changed values
o v the value – contains the status key and it’s new values

3.4.6. Send Commands

key: cmd

Table 7: Command (cmd) parameters

key the key of the command to be send
objIds the id(s) of the objects where the command shall execute

if more than 1 id is used, the id’s must be seperated by semicolon (;)
value the new value . the value should be UTF-8 encoded
subKeys if subValues are submitted, seperated by semicolon (;)
subValues add subvalues in the same order as subKeys, seperated by

semicolon(;)
The values should be UTF-8 encoded

Figure 19: Example cmd request to switch two lighs on

Figure 19 shows an example to switch on two lights.

GREAT – AAL-2016-023

38

4. Light

4.1. Biodynamic Light Extension Bundle

The biodynamic light objects regulate the light instensity and color temperature
during a day period with the possibilities of different interventions (see Figure
20,Figure 21, Figure 22).

The light curve objects send values to 3 separate output channels to set the following
values calculated by a predefined curve in json format:

- dim level (0-100%)
- Color temperature in Kelvin
- fadetime in seconds (0 - 180 sec)

Figure 20: Example biodynamic light definition

0

10

20

30

40

50

60

70

80

90

100

110

120

2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
%

CC
T

Tageszeit

biodynamic light
CCT

GREAT – AAL-2016-023

39

Interventions:

Figure 21: Example: Activation Light 'cue' definition

Figure 22: Example: Calming light 'cue' definition

0
1000
2000
3000
4000
5000

0102030405060708090100110120130

12:00:00 AM 12:05:00 AM 12:05:05 AM 12:21:00 AM

CC
T

[K
]

E
[%

]

t [h]

Activation Light "cue"

Eh (direkt/Task) [%] CCT

0
500
1000
1500
2000
2500
3000
3500
4000
4500

0

20

40

60

80

100

120

12:00:00 AM 12:10:00 AM 12:50:00 AM 1:00:00 AM

CC
T

[K
]

E
[%

]

t [h]

Calming Light "cue"

Eh (direkt/Task) [%] CCT

GREAT – AAL-2016-023

40

4.1.1. Light Curve Object Description

Figure 23: Configuration of the Light curve object in conjunction with the light device

Commands:

Service:

Download curves:

 Downloads a new curve configuration from an external server

Start

 Starts/Stopps the service

Manual control:

Switch

 To switch the light on/off manually (e.g. by an external switch)

Set curve

 Sets the current curve to use for the calculation of the light values

Set dim offset (+/- 0-100%)

 adds a dim offset to the current light values

Toggle

GREAT – AAL-2016-023

41

 To switch the light on/off manually (e.g. by an external switch)

Send message

 Sends a text message to the user clients.

 id some id. the id will be returned in the response

 type OK or YES/NO message

 dur sets the duration of the message to be shown

 txtfalse sets the text to be shown for the 'false' button

 txttrue sets the text for be shown for the 'true' button

Interventions:

Calming

 Sets a calming intervention (1 hr)

Activating

 Sets the activating interventions (20 min)

TV scene

 Starts the TV scene (1 hr)

Norm light

 Switches to the Norm light curve

Reset

 Switches back to the biodynamic light control

from Rocker switch (Manual control via external switches)

SMART dim

 Dims the light up/down

SMART scene

 Calls predefined scenes

User interface (commands which are send directly by the client app as a response)

Send feedback

 After an intervention has been completed, the user will be ask for a feedback.
 The feedback contains a number for good/bad and the possibility to enter an
 additional text.

GREAT – AAL-2016-023

42

Call intervention

 Requests the server to start a predefined intervention. Possible values are:

 Reset (switches back to biodynamic curve)

 Activate, Relax, TV scene, Norm light, Off

 Cancel (cancels an ongoing intervention. (on Activate and Relax only)

Send response

 Sends a response to a previous asked question.

 Possible values are: YES, NO, OK

Status:

Current curve

 Shows the name of the current selected curve

Dim offset

 Shows the current dim offset added to the current output values

Debug

 Shows some detailed debug information

Power

 Shows if the light is on or off

State

 Shows if the service has started (Running, Stopped, Failed)

Control

 3 independent control channels to set the value on the connected lights

Properties:

Config

 curve in json format

Curve server url

 The URL where the curve is being fetched from during automatic update

 e.g.
https://uct.labs.fhv.at/glight/greatcurves/getCurveData.php?key=greatDemo

GREAT – AAL-2016-023

43

Curve server update

 Off Automatic updates are disabled

 Every hour Updates the curve every full hour

 Midnight Updates the curve every day at midnight

Simulation mode

 Off Normal operation

 24h in 1 min Simulates 24h in 1 min (1440 times faster)

 24h in 5 min Simulates 24h in 5 min (288 times faster)

 24h in 30 min Simulates 24h in 30 min (58 times faster)

Scale % max

defines the highest % value set within the curves config.

Example: in an 'Activating Intervention' it we like to overrule the regular 100%
value and activate 120% for a short time. In that case, the output values will
be scaled to 0-100% for all calculated values and therefore the regular 100%
would be scaled to 83.3% to be sent to the hardware.

Send delay

Send delay in milliseconds between the cmds. when multiple commands are
sent at the same time

 if not set or 0 means NO pause between commands

Autostart

 Defines wheter this object will be started (true) after System startup or not
(false)

Retry to start

 Time to wait after the startup failed to restart the object.

General settings

 Max feedback time Sets the time on how long the system waits for a
 feedback after an invention has been executed

 Show norm light button Sets whether the User client shall show the normlight
 button or not

 Show TV scene button Sets whether the User client shall show the TV scene
 button or not

 Start on Interface cmd Sets whether the object shall be start on any cmd
 from user client or not

 Has light module Sets whether the user client shall include the light
 module or not

GREAT – AAL-2016-023

44

 Has sound module Sets whether the user client shall include the sound
 module or not

 Has scent module Sets whether the user client shall include the scent
 module or not

 After intervention Sets the action after the intervention has been
 finished

 Possible values are: Biodynamic, Off, Previous state

 On cancel intervention Sets the action after the intervention has been
 cancelled

 Possible values are: Biodynamic, Off, Previous state

 Send interval Sets the interval of the light changes sent to the
 light modules

4.1.2. Protocol Data Exchange between Light and Controller
The controller acts as master to the lights. All settings and commands will be sent by
the controller.

4.2. DATA: Controller to Light

The light sets the requested color and brightness values in the requested fade time
by its own with predefind correction values.

Basis: Enocean 4BS Telegram: A5-38-09 / modified

Byte Description Bit pos Function Values

0x03 OPTION FLAG

FARBTEMPERATUR
0.7
0.6…0.0

Reserve, Future Use
Color Temperature

0
0 -> 2000K
1 -> 2050K (INC 50K)
127 -> 8350K (1)

0x02 BRIGHTNESS 0.7…0.0 Definition Brightness 0 (OFF)

1 -> Minimalwert
255 -> Maximalwert

0x01 FADETIME 0.7…0.0 Definition Fade Time 0….180 -> 1Sec

181 -> 4Min
255 -> 75Min

0x00 FUNCTION (Receiver) 0.7...0.4 UPLIGHT 7
 DOWNLIGHT FLÄCHE 6
 DOWNLIGHT SPOT 5
 LEARN BIT

0.3 Data telegram

Learn Controller
1 Default
0

 SEND STATUS

0.2 No Status
Send Status

1
0 Default

GREAT – AAL-2016-023

45

 STORE FINAL VALUE

0.1 Yes
No

1 Default
0

 SERVICE MODE FLAG

0.0 Service function
Normal operation

1
0 Default

(1) Received color temperature values will be adapted to the defined light color. (Range 2200K..5000K)

4.3. Statusresponse from Light to Controller

Ist Statusflag in FUNCTION is at Send Status, a Status response with the current values
will be sent 5.5 sec after the last command.

Byte Description Bit pos Function Values

0x03 OPTION FLAG

CURRENT VALUE
COLOR TEMP

0.7
0.6…0.0

Reserve, Future Use
Current Color Temperature

0
0 -> 2000K
1 -> 2050K (INC 50K)
127 -> 8350K
(1)

0x02 CURRENT VALUE

BRIGHTNESS
0.7…0.0 Current brightness 0 (OFF)

1 -> min value
255 -> max value

0x01 ERROR FLAG

TEMPERATURE VALUE

0.7

0.6..0.0

Error driver
(auto reset)
Temperature of the light

0 -> No error
1 -> Error
0 -> 0°C
100 -> 100°C Max
101..124 reserved,
 Errorspecific.
125 -> Error Temp. Sensor
126 -> No Temp. Sensor
127 -> Temp. Measure in
 process, Initial value
(2)

0x00 FUNCTION (Absender) 0.7...0.4 UPLIGHT 7
 DOWNLIGHT FLÄCHE 6
 DOWNLIGHT SPOT 5
 LEARN BIT

0.3 Data telegram

Learn Controller
1
0

 SEND STATUS

0.2 No Status
Send Status

1
0

 STORE FINAL VALUE

0.1 Yes
No

1
0

 SERVICE MODE FLAG

0.0 Service function
Normal operation

1
0

(2) Not all light elements have integrated temperature sensors. Values from 101 to 125 will be used for Status and error
specifications.

4.4. Teach In

After pressing a button or by manually activating the teachIn function on the lgiht,
the light will switch to the teachIn mode. This will be shown through a flashing light.

GREAT – AAL-2016-023

46

The TeachIn mode will be activated with a maximum duration of 1 minute. After that
the light will be switched back to normal operation. A reactivating of the TeachIn
mode will can be switched immediately.

If the Controller sents a Telegram with the TeachIn bit set within this time, the light will
be teached in.

Maximum 5 controllers can be teached in. A long press of the button of at least 5
seconds will delete all teachedIn devices.

4.5. Definition Factory Default

In factory default state, the following functions and values are predefined:

- Each controllr can control the light
- The light is preset to 15% light and 3000K for up-Lights and down-lights.

Timing of commands

The minimum time between commands shall be at least 250ms.

Dimming control

The new values must be at least 100K or 5 brightness points alter to the previous
value.

After receiving of the last value and the 'status flag' has been set, a status response
will be sent to the controller after 5.5 sec.

4.6. Luminaire

Figure 24: Luminaire schematic

The advanced logical setup of the luminaire gives further possibilities for future
applications and modifications.

Master:

GREAT – AAL-2016-023

47

The master microcontroller system communicates with the system controller and sets
the "slaves" to the specified brightness and color values.

Slave - Uplight, Downlight system:

The slave has its own microcontroller, which sets each LED driver to the appropriate
value and controls temperature of the high power LED strips.

GREAT – AAL-2016-023

48

5. Sound Module

The sound module offers sound playback for the GREAT system. It is built on top of
existing open source software with a minimal abstraction layer to safely connect the
sound module to the GREAT system. Compared to the sound module used in the
functional tests (see D2.2), the sound module has been extended to support
individualized playlists, allow for a more finegrained volume control over time, and
simplified triggering of activation / relaxation stimuli.

Figure 25: Communication between the Intefox music module extension and the sound module.

The software stack of the sound module is based on the Raspbian Stretch Lite Linux
distribution for Raspberry Pi. For sound playback, the open source music player
daemon (MPD) is used in combination with the mpc client tool for control (see Figure
25).

A thin abstraction layer on top offers secured communication with the GREAT system
and remote playlist updating.

In addition to the playlist-based sound playback offered by mpd, also AirPlay music
streaming is supported using the open source shairport-sync package. This allows for
using the GREAT sound module also as independent wireless speakers.

The sound module is connected to the GREAT system via WLAN. The connection to
the network is monitored and if the network connection is lost (typical reasons could
be power outage at the main controller, wireless signal interferences…),
reconnection attempts will be made periodically until they succeed. This also allows
for automatic connection of the module during installation and after network
dropouts.

Availability of the sound module inside the GREAT network is announced via the
open source avahi-daemon package.

ALSA

MPD

MusicConnector

IQaudIO
DriverFoxNode

MusicModuleNode

SecureTCP
Communicator

TCP/IP over TLS

Sound ModuleMusicModule Extension Bundle
GREAT WLAN

Shair-
port-
sync

GREAT – AAL-2016-023

49

5.1. Image Preparation

5.1.1. Basics
The basis for the software stack is the Raspbian Stretch Lite distribution. Once this is
installed, the other software packages used by the sound module must be installed.

First the driver for the Pi-DACZero sound card needs to be activated. This is done
using a dtoverlay-entry in the /boot/config.txt file:

dtoverlay=iqaudio-dacplus

Optionally the onboard audio can be disabled by commenting out the dtparam for
audio-on:

#dtparam=audio=on

Setting up the music player functionality involves installing the mpd and mpc
packages:

sudo apt-get install mpd mpc

In the mpd.conf file, the user group should be adjusted to the audio group

group “audio”

and the audio output needs to be adjusted to use the hardware output devices
provided by the IQaudIO driver

audio_output {

 type "alsa"

 name "My ALSA Device"

 device "hw:0,0" # optional

 mixer_type "hardware" # optional

 mixer_device "hw:0" # optional

 mixer_control "Digital" # optional

 mixer_index "0" # optional

}

Other than that, the default settings are fine.

For the update functionality, the python requests package is required:

sudo apt-get install python-requests

Also, a sounds directory and a tmp directory need to be created that are used for
music storage or temporary files during updates.

GREAT – AAL-2016-023

50

mkdir /home/pi/sounds

mkdir /home/pi/tmp

For the TLS connections to work, the required certificates and key files need to be
copied to /home/pi/certs on the PI:

ca-chain.cert.pem, great_music.cert, great_music_nopw.key

Finally, the files musicModuleServer.py, ThreadedPlaylistUpdater.py and
startMusicConnector.sh need to be copied to the system and an entry to the
crontab needs to be made to automatically start the music connector on startup:

@reboot sh /home/pi/startMusicConnector.sh

5.2. Shairport-Support (for AirPlay functionality, optional)

To build and install the shairport-sync package, follow the instructions, given by the
author at https://github.com/mikebrady/shairport-sync:

Install necessary packages to build the shairport-sync daemon:

sudo apt-get install build-essential git xmltoman

sudo apt-get install autoconf automake libtool libdaemon-dev libpopt-dev libconfig-dev

sudo apt-get install libasound2-dev

sudo apt-get install avahi-daemon libavahi-client-dev

sudo apt-get install libssl-dev

sudo apt-get install libsoxr-dev

Then checkout the latest version of the shairport-sync source code, configure, make
and make install it:

git clone https://github.com/mikebrady/shairport-sync.git

cd shairport-sync

autoreconf -i -f

./configure --sysconfdir=/etc --with-alsa --with-avahi --with-ssl=openssl --with-metadata --with-soxr --with-
systemd

make

sudo make install

Then create a shairport-sync directory in /var/run and change the owner to
shairport-sync:shairport.sync

GREAT – AAL-2016-023

51

sudo mkdir /var/run/shairport-sync

sudo chown shairport-sync:shairport.sync /var/run/shairport-sync

Then create a shairport-sync.conf file in /etc/tmpfiles.d to allow shairport to create
temporary files. The content should be:

d /var/run/shairport-sync 0755 shairport-sync shairport-sync -

Finally adjust the shairport-sync.service file to run as a daemon by editing
/lib/systemd/system/shairport-sync.service and add a ‘-d’ to the ExecStart and
adding a Type = forking line.

ExecStart=/usr/local/bin/shairport-sync -d

Type=forking

In /etc/shairport-sync.conf the name of the speakers (in general section) and quality
parameters can be set. If no name is set, the hostname will be used.

Finally enable the service:

sudo systemctl enable shairport-sync

5.3. WLAN Setup

Each sound module is prepared to connect to the GREAT wireless network. This is
done via the wpa_supplicant.conf file.

network={

 ssid="GREAT"

 psk=87b61f54914c527c67f87766167db5f9626c31a5c7a0d9e30cfe5024be6fa1ec

 key_mgmt=WPA-PSK

}

Instead of supplying the password in clear text, the wpa_passphrase tool can be
used to generate the psk. For this the ssid and password need to be supplied as
parameters.

The interfaces configuration file /etc/network/interfaces sets up the wlan0 interface
to use the wpa_supplicant.conf file.

The interface definition of the interfaces file in /etc/network/ contains:

source-directory /etc/network/interfaces

auto lo

GREAT – AAL-2016-023

52

iface lo inet loopback

iface eth0 inet manual

allow-hotplug wlan0

iface wlan0 inet manual

 wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

To watch for network disconnects, a wlanConnector script is run periodically to
check if the gateway is still available. If it’s not available anymore, the wlan0
interface is shut down and re-enabled to try to reconnect again:

#!/bin/bash

ping the router, no need to hit google for this.

SERVER=172.24.1.1

#specify wlan interface

WLANINTERFACE=wlan0

Only send two pings, sending output to /dev/null

ping -I ${WLANINTERFACE} -c2 ${SERVER} > /dev/null

If the return code from ping ($?) is not 0 (meaning there was an error)

if [$? != 0]

then

Restart the wireless interface

/sbin/ifdown --force ${WLANINTERFACE}

/sbin/ifup ${WLANINTERFACE}

fi

The wlanConnector script is run every two minutes as a cron job with the following
definition in crontab:

*/2 * * * * /home/pi/wlanConnector.sh

5.4. Music Module Extension Bundle

The music module system bundle provides functionality of the sound module inside
the Intefox automation system. It communicates with the sound module over a TLS
secured TCP connection.

GREAT – AAL-2016-023

53

The music module bundle is implemented using the OSGi based plugin architecture
provided by the Intefox fox.core system.

The music module bundle provides a range of input-connections that can be
connected to outputs of other event sources. It also provides output events that can
be connected to inputs of other components (see Figure 26). In the GREAT context,
the output events are mainly used for logging the system state. See Table 8 for a
description of the input events, Table 9 for a description of the output events and
Table 10 for a description of the parameters.

Figure 26:The available connections for the music module extension for the Intefox system and its
parameter settings.

Table 8: Description of input events of the music module extension.

Input Description

Connect Tries to connect the node to the module at the address given in the URL parameter.

Disconnect Disconnects from the module and closes all connections

Reboot Causes the Sound module device to reboot.

ShutDown Causes the Sound module device to safely shut down.

Play Starts playback of the current song

Pause Pauses playback of the current song

Stop Stops playback of the current song

Previous Jump to the previous song in the playlist

Next Jump to the next song in the playlist

GREAT – AAL-2016-023

54

Select Item Selects the song at the given number in the playlist (e.g. the first song would be 1)

Volume Immediately sets the volume to the given percentage level (volume control is logarithmic)

Fade To Fades to the given percentage level within the Fade Time that is provided in the parameters.

Volume Up Increases the volume by the step size defined in the parameters

Volume Down Decreases the volume by the step size defined in the parameters

Update
Playlists

Causes the sound module to update its playlists. The playlist definition is downloaded from the URL
that is defined in the parameters

Select Playlist Selects the playlist at the given index (zero means the first playlist defined in the Playlists
parameter settings)

Set Fade Time Sets the fade time to the given time in ms

Repeat Mode Turns the repeat mode on/off.

Random
Mode

Turns the random mode on/off (plays tracks of the playlist in a random order)

Single Mode Turns the single mode on/off (only plays a single track of a playlist).

Consume
Mode

Turns the consume mode on/off (when random mode, consumes already played tracks so they
aren’t played twice).

Shuffle Shuffles the order of the current playlist.

Activate Selects and starts the activate playlist on True, stops playback on False

Relax Selects and starts the relax playlist on True, stops playback on False

Table 9: Description of output events of the music module extension.

Output Description

Connected True if connected to the sound module, False if not

State Possible values: Playing, Paused, Stopped, Finished

Playing True if currently playing, False otherwise

Volume Current volume level in %

Progress Progress of the current sound playback in %

Number of
Sounds in
Playlist

Number of sounds in current playlist

Current
Sound File

The currently selected file for playback

Current
Sound
Number

The number of the currently selected file inside the currently selected playlist

Current
Sound Time

The current time of the currently playing sound

Current
Sound
Duration

The total time of the currently playing sound

Last Error The last received error message

Update Status The status of the update process.

Update
Running

True if the update is currently running, False otherwise

GREAT – AAL-2016-023

55

Repeat Mode Status of the Repeat Mode

Random
Mode

Status of the Random Mode

Single Mode Status of the Single Mode

Consume
Mode

Status of the Consume Mode

Selected
Playlist

Index of the selected playlist (zero based)

Debug Debug text output (only used for development)

Activate Boolean indicating if an activation session is running

Relax Boolean indicating if a relaxation session is running

Table 10: Description of parameters of the music module extension.

Parameter Description

IP-Address IP-Address or link local name of the sound module

Port The port on which the sound module listens (default 10023)

Auto-
Reconnect-
Interval

Interval in seconds for automatic reconnection if the connection gets lost. 0 means automatic
reconnect is disabled.

KeyStore File The path to the keystore file containing the certificate for connection to the sound module.

KeyStore
Password

The password for the keystore file

Volume Step
Size

The step size for volume up and volume down commands

Fade Time The time in seconds to transition to the new volume set by the Fade To command

Playlists Comma separated list of predefined playlist names for the mapping between Index (zero based)
and playlist name. ‘activate’ and ‘relax’ playlists are mandatory.

Update URL The URL that provides the playlist information for the sound module. This URL is queried when the
Update command is issued.

Activate
Duration

The duration of the activate session. If the activate playlist lasts longer, it is stopped after this time.

Relax
Duration

The duration of the relax session. If the relax playlis lasts longer, it is stopped after this time.

Activate
Target
Volume

Percentage of the volume for activate sessions.

Relax Target
Volume

Percentage of the volume for relax sessions.

FadeIn Time Time it takes from start to the defined volume level

FadeOut Time Time it takes to fade out from the defined volume level to the base volume at the end of a
session.

Base Volume Percentage of the volume defined as starting/endpoint

Activate
Volume
Curve

Comma separated list of time:volume pairs. Allows for individualized volume progression during a
playlist. This setting is optional. If present, it overrules target volume settings.

GREAT – AAL-2016-023

56

Relax Volume
Curve

Comma separated list of time:volume pairs. Allows for individualized volume progression during a
playlist. This setting is optional. If present, it overrules target volume settings.

Activate
Volume
Scaling

Factor to scale incoming volume values during activation sessions

Relax Volume
Scaling

Factor to scale incoming volume values during relaxation sessions

Repeat
Playlists

Default settings if a playlist should be repeated (might be adjusted according to the downloaded
playlist)

Single Mode Default setting if a playlist should be put to single mode (might be adjusted according to the
downloaded playlist)

Random
Mode

Default setting if a playlist should be put to random mode (might be adjusted according to the
downloaded playlist)

5.5. Sound Module Protocol Description

The communication between the music module extension for the Intefox system and
the sound module hardware is based on TLS secured TCP/IP streams. Messages are
exchanged in a text-based form and its commands are based on the open source
mpc tool for controlling the mpd music player daemon that is used for the actual
sound playback. A separate musicConnector acts as a wrapper to mpc/mpd that
provides a secured communication layer to the Intefox extension and
communicates with the mpd via the mpc tool.

musicModuleExtension | < - > | musicConnector -> mpc -> mpd

The music connector receives commands from the music module extension via an
TLS secured TCP/IP stream. It parses the commands and sends them on to the mpc
tool that controls the mpd.

The musicConnector queries the mpc tool for the status of the mpd and sends the
status messages back to the music module extension on the Intefox system.

The music connector acts as a server where the music modules extensions connects
to. Only one client can connect to the server (a music module extension on the
Intefox system has exclusive access).

The music module extension and the sound module must authenticate themselves
using a TLS-Certificate. Only communication between verified peers is allowed.

Messages are sent using a text-based stream. If multiple parameters are sent along,
they are delimited by spaces or tabs. Each message is terminated by a newline
character.

cmd [param]><NL>

If the command is accepted by the musicConnector, a simple ack message is sent
back. If a command cannot be handled, a nack message is sent back.

GREAT – AAL-2016-023

57

5.5.1. Commands from Client to Server:

nop

This is a keep alive message with no other purpose.

play <itemNumber>

Plays the item at the specified number. This invokes the mpc play command. The
item number parameter is 1 based (1 means the first item).

stop

Stops the playback. This invokes the mpc stop command.

next

Switches to the next track in the playlist. This invokes the mpc next command.

prev

Moves to the previous track in the playlist. This invokes the mpc prev command.

pause

Pauses playback of the current track. This invokes the mpc pause command.

shuffle

Shuffles the current playlist. This invokes the mpc shuffle command.

random on|off

Sets the random playback mode of the mpd. This invokes the mpc random
command with the supplied argument.

single on|off

Sets the single playback mode of the mpd. This invokes the mpc single command
with the supplied argument.

repeat on|off

Sets the repeat mode of the mpd. This invokes the mpc repeat command with the
supplied argument.

GREAT – AAL-2016-023

58

consume on|off

Sets the consume mode of the mpd. This invokes the mpc consume command with
the supplied argument.

volume <targetVolume>

Sets the playback volume of mpd. This invokes the mpc volume command. If a fade
operation is ongoing at the moment, it is terminated, and the volume is immediately
set to the targetVolume.

fadeTo <targetVolume> <fadeTime>

Fades the volume from the current level to the target volume level within the
specified fadeTime (in milliseconds). This repeatedly invokes the mpc volume
command with intermediate steps until the target volume is reached.

playlist <playlistName>

Switches to the specified playlist. This invokes the mpc clear command followed by
the mpc load command with the specified playlist name. Only if playback was
active at the time, the playback for the new playlist will be started automatically. In
this case the mpc play command will be invoked for the first item.

startPlaylist <playlistName>

Switches to the specified playlist and starts playback. This invokes the mpc clear
command followed by the mpc load command with the specified playlist name
followed by the mpc play command for the first item.

update url

Invokes an asynchronous update of the music playlists. The server at the URL is
expected to return a playlist description in json format. Then, for each listed item a
mpd compatible m3u playlist file is generated and the respective files are
downloaded from the sources specified in the json description, if they are not
already present on the system.

Core-JSON-format expected as return of the update command:

{

 <playlistName1> = {

 [

 “soundFile”=“<destination path of sound>”,

 “sourceURL”=“<download url for sound>”

],…

 },

GREAT – AAL-2016-023

59

 <playlistName2> = {

 [

 “soundFile”=“<destination path of sound>”,

 “sourceURL”=“<download url for sound>”

],…

 },…

}

An example URL for this call is i.e.:
https://uct.labs.fhv.at/glight/greatcurves/getPlaylists.php?zoneKey=uctZone&playlistsOnly=true

The reply contains playlists with filename and source URL infos (in the GREAT context
playlist names are supposed to be “activate” and “relax”). Each playlist contains an
array of items, where each item is specified by the soundFile property that specifies
the target location on the music module system, and a sourceURL property that
specifies where the sound is available for download from, in case it doesn’t already
exist on the system.

If the flag playlistsOnly in the URL is omitted, a more detailed version of the playlists,
including meta-info is used. This fully featured playlist-info is only used by the music
module extension, but not by the music module itself. The music module extension
automatically appends the playlistsOnly flag to the URL passed to the music module
and uses the contained meta-data to set the parameters accordingly. A typical
example of such a fully featured playlist including meta-info is shown below:

{

 "activate": [

 [

 "Sound011_activate_70kHz_herzschlag.wav",

 "https://uct.labs.fhv.at/greatsounds/Sound011_activate_70kHz_herzschlag.wav"

],

 [

 "Sound008_activate_30kHz_herzschlag.wav",

 ""

]

],

 "relax": [

 [

 "Sound007_relax_30kHz_stetig.wav",

 ""

],

 [

 "Sound009_relax_30kHz_atem.wav",

 ""

GREAT – AAL-2016-023

60

]

],

 "dateDefined": "2019-07-11 11:46:38",

 "firstRequestedDate": "2020-01-31 14:34:50",

 "firstRequestedFrom": "193.170.2.20",

 "lastRequestedDate": "2020-01-31 14:34:50",

 "lastRequestedFrom": "193.170.2.20",

 "playlistID": "58",

 "zoneName": null,

 "activateDuration": 1260,

 "relaxDuration": 3600,

 "singleMode": true,

 "randomMode": false,

 "repeatMode": true,

 "activateVolumeScaling": 1,

 "relaxVolumeScaling": 1

}

The major differences to the playlistOnly format are the keys-value pairs for the meta-
info.

Status info of the asynchronous update process on the music module are sent to the
music module extension while the process is running.

system shutdown|restart

Shuts down or restarts the music module.

5.5.2. Commands from Server to Client:
Note, in contrast to the client-server messages, parameters in server-client messages
are delimited by tab, as params can potentially contain spaces in their values.

status finished|playing|stopped|paused

The current playback status. If finished, the playlist has been played to the end. If
playing the playlist is currently playing, if stopped, the playlist is currently stopped, if
paused, the playlist is currently paused.

volume <currentLevel>

The current volume level in %.

GREAT – AAL-2016-023

61

repeat on|off

The current repeat setting of mpd.

random on|off

The current random setting of mpd.

single on|off

The current single setting of mpd.

consume on|off

The current consume setting of mpd.

currentSound <soundName>

The name of the currently playing sound.

updater <statusMessage>

The current status of the playlist update process (e.g. downloading of sound files).
The status message is a tab separated list of more infos.

 update <message>

 error <error message>

ack

The command was received and executed

nack

The command was received but not understood. No action has been taken.

5.6. Relevance/Reuse-Potential outside GREAT

The developed wrapper to mpd/mpc and the extension for the Intefox system can
be used in any scenarios that involve mpd-based music playback systems that need
to be controlled from home automation systems.

Outside Intefox powered smart buildings the music module can also be easily
integrated into other smart building middleware systems, due to its lightweight and
open protocol.

GREAT – AAL-2016-023

62

The music module can be used independently of any home automation system as
an AirPlay speaker system. The music connector automatically handles AirPlay
sessions.

One major challenge during the GREAT project was to identify and develop sounds
that not only support the intended activation or relaxation of persons within reach
but are also accepted by the persons. The sound concept used for this is described
in the next cpater.

5.7. Sound Concept

Hearing is a physical phenomenon, provided the affected possess appropriate
receptors. Processing these stimuli cognitively creates an experience of hearing with
specific characteristics. These are directly measurable as characteristics of
perception as opposed to the original stimuli.

Sounds from natural contexts form the basis of the auditory stimuli used. An
advantage of sounds from natural environments over musical stimuli is that music
can have very divergent effects on different individuals due to different individual
preferences, emotional conditioning and other subjective factors. Certainly, this risk
of uncontrollable association and effect based on individual factors also exists for
sounds from nature, since these impressions of different persons or groups of persons
could also be linked with different references. However, the extent of emotional
semantics of sounds such as the sound of the sea does not seem to be as
pronounced as the potential of much music: These natural sounds originate from an
environment in which, together with complementary visual olfactory stimuli, they
initially provide information about the environment. In their origin they have, at least
initially, a predominantly informative character. Music, on the other hand, does not
initially have a purely informative character in its origin, but is designed to have a
certain effect or a certain content, it takes place in an environment in a broader
sense, culturally, spatially, temporally, which does not formulate an informative claim
but one based on subjective reception (be it aesthetic, emotional or otherwise).
Accordingly, music and its effects are strongly influenced by subjective influences.

When designing auditory stimuli for use with a previously indeterminable number of
different persons, the greatest possible acceptance should therefore be achieved
by keeping the risk of widely divergent reception and thus widely divergent impact
as low as possible. As the use of these stimuli is ultimately also designed to be
applicable within the framework of a modular, multisensory approach or mode of
action, i.e. in conjunction with visual and olfactory stimuli, it is necessary to include
cross-modal design possibilities in the production of the auditory stimuli.

This means, apart from the basically positive effect of certain natural sounds, to
consider the design possibilities of the parameters that can be treated
independently of the special semantic content, in order to promote the greatest
possible compatibility in the sense of increasing or supporting the effect of the other

GREAT – AAL-2016-023

63

stimuli in the combined multisensory interaction. There are connections between
auditory and visual or olfactory perception.

We looked at several adaptable aspects of sounds and evaluated their valence,
receptibility and direction (meaning relaxing or activating) as illustrated in Figure 27.

Figure 27: Dimensions of sound characteristics regarding receptibility, valence and direction

Volume

When recording natural sounds and trying to model the volume to a different place
sounds can be too quiet or too loud for comfort. Therefore, a logarithmic scale
should be applied to create satisfyingly loud experiences.

Valence
Changing the volume of a sound leads to a directly proportional change in its
valence.

Receptibility
The general Volume influences the receptibility immensely, as it is the most important
feature: it doesn’t matter what other features a sound has, if no one can hear it.
Volume, therefore, is a basic requirement for reception of sounds.

Direction
Volume has a supporting role concerning this aspect, as it does not posses any
qualitative functions cooperating with other features.

Duration

Meaning the temporal extension of an individual sound as a whole. The duration,
structure of its parts will be discussed more closely in the chapter shape. There is a

GREAT – AAL-2016-023

64

difference between stationary (continuing or repeating) and non-stationary (only
appear once) sounds. Stationary ones can be set to a desired duration.

Valence
A stationary, long sound could – by maintaining – continuously augment other
features influencing valence. If these other features are very directing (concerning
relaxation or activation), a long duration could first lead to an increase by
persistence. On the other hand, it could also lead to a decrease as there might be a
habituation effect. For non-stationary sounds, the valence is probably connected to
other features, very short duration could negate any effects of high valence.

Receptibility
Apart from being too short, the duration should not play a role.

Direction
Duration should not affect, whether a sound is perceived as relaxing or activating.

Contextualization

Every environment has its own acoustic information. Adding another sound can
either change its context or leave it unchanged. There should be a balance
between interrupting, continuing and creating atmospheres.

Valence
Small differences between previous and new context might remove valence
completely. Increasing the variation might create a new context but does not
necessarily improve valence.

Receptibility
To actively perceive a sound, it must be discernable in the given environment. A big
difference between sound and context means good receptibility.

Direction
Contextualization defines the direction and strength of the stimuli by creating
contrasts and subjectively perceived changes in their categorization between
relaxing and activation.

Timbre

It describes not only static states of the frequency spectrum but also processes which
appear between our varying frequency spectrums.

Valence
A source of sound which gets louder and changes from dull to bright is closing in on
us – and is therefore, evolutionary seen, of high valence. If it changes in the opposite
direction the “threat” is leaving and can be ignored. The human ear is also tuned in
to certain frequencies and is more attentive when they appear.

GREAT – AAL-2016-023

65

Receptibility
Human speech usually ranges between 200 and 5000 Hz, our ears are hearing most
efficiently between 2000 and 5000 Hz. Therefore, we receive sounds in that range
best.

Direction
Bright sounds tend to be perceived as activating, dull sounds as relaxing.

Description of the interventions

To use auditive stimuli with maximum acceptance it’s necessary to minimize the risk
of varying reception and effect between different participants. Natural sounds and
music can both lead to negative associations, depending on their previous
experience and connected memories. After our intial approach of using natural
sounds and some surprising associations with them, we created abstract sounds that
are described below.

Activating sound
The activating scenario provides a 20-minute course. The sound (blowing of wind
through a forest) has a very low volume at the beginning of the course and
continues to increase until it reaches its maximum after 5 minutes. This level is held for
a period of 15 minutes until it falls to a medium level at the end of the course to
discharge the activating phase.

The pitch increases over the entire course by 200 percent. The timbre brightens when
the threshold of a low-pass filter is raised. The low-pass filter with a slope of 18dB / oct
starts with a high cut at 100 hertz and opens completely for the first 5 minutes.

Calming sound
The calming scenario envisages a progression over a period of 60 minutes. The used

audio sample (= the used, digitally stored sound), sea noise, starts with a low volume
and increases it over 2 minutes to a medium volume. This level will decrease for 8
minutes to remain at a low volume for another 40 minutes. Then, to discharge the
calming scenario, the volume level increases again over 10 minutes until it finally
reaches the initial level.

The tone color of the sample is rather dull at the beginning, as a low pass filter with a
slope of 12 dB / octave performs a lowcut at 4000 Hz.

Later, the threshold of the lowcut drops to 200 Hz. In the end, the threshold is
increased to 20000 Hz over a period of 10 minutes. Further, over the course of 15
minutes, the spatial information of the sound has been changed so that by using a
reverb with a reverberation time of 4.2 seconds, the dry / wet ratio changes from
100/0 to 0/100 so as the sound seems to move away.

GREAT – AAL-2016-023

66

6. Scent Module

The scent module is a remote controllable 2-channel scent dispenser for GREAT. It
offers a simple TCP/IP based remote interface for easy integration into home
automation systems. Compared to the scent module used in the functional tests (see
D2.2), the scent module has been extended in multiple ways:

- Added support for warning messages depending on actuation count (e.g. for
bottle replacement)

- Added support for customized trigger sequences for activation/relaxation
- Simplified triggering of activation/relaxation stimuli
- Added support for environmental sensor data of the integrated BME680

sensor.

Figure 28: Integration of the scent module into the GREAT controller system based on Intefox.

The software stack of the sound module is based on the Raspbian Stretch Lite Linux
distribution for Raspberry Pi which runs on a Raspberry Pi Zero W hardware. For
controlling the scent pump-drive motors, the GPIOs of the Raspberry are used which
are controlled via the Python based GPIO wrapper RPi.GRPIO (see Figure 28). The
current that’s flowing through the motors is measured via a shunt and an I2C based
analog digital converter (see hardware description). To sample and access these
values, the Adafruit_ADS1x15 library is used. A simple peak detection algorithm on
these motor current values is then used to identify the end of a pump cycle.

The scent module is connected to the GREAT system via WLAN. The connection to
the network is monitored and if the network connection is lost (typical reasons could
be power outage at the main controller, wireless signal interferences…),
reconnection attempts will be made periodically until they succeed. This allows for
automatic connection of the module during installation or network dropouts.

GPIO

ScentServer

FoxNode

ScentModuleNode

SecureTCP
Communicator

TCP/IP over TLS

Scent ModuleScentModule Extension Bundle
GREAT WLAN

RPi.GPIO Wrapper Adafruit
ADS1x15

GREAT – AAL-2016-023

67

Availability of the scent module inside the GREAT network is announced via the open
source avahi-daemon package.

6.1. Image Preparation

The basis for the software stack is the Raspbian Stretch Lite distribution. Once this is
set up, the following packages need to be installed:

sudo apt-get install git build-essential python-dev

sudo apt-get install python-pip

sudo pip install adafruit-ads1x15

sudo apt-get install python-smbus

Each scent module should get a unique and meaningful hostname. In the GREAT
context, this should be in the format greatscentXX, where xx is a continuous number.
The hostname is adjusted by editing the files /etc/hostname and /etc/hosts by
replacing the default “raspberrypi” with the new name.

For the TLS connections to work, the required certificates and key files need to be
copied to
/home/pi/certs on the PI:

ca-chain.cert.pem, great_scent.cert, great_scent_nopw.key

The WLAN needs to be set up in a similar way as described for the sound module, so
the scent module connects itself to the GREAT network and attempts to reconnect
itself if the network connection is dropped.

Finally, the files scentServer.py, ThreadedPowerReader.py and startScentServer.sh
need to be copied to the system and an entry to the crontab needs to be made to
automatically start the scent server on startup:

@reboot sh /home/pi/startScentServer.sh >> /home/pi/scent.log 2>&1

6.2. Scent Module Extension Bundle

The scent module extension bundle provides functionality of the scent module inside
the Intefox automation system. It communicates with the scent module over a TLS
secured TCP connection.

The scent module bundle is implemented using the OSGi based plugin architecture
provided by the Intefox fox.core system.

GREAT – AAL-2016-023

68

The scent module bundle provides a range of input-connections that can be
connected to outputs of other event sources. It also provides output events that can
be connected to inputs of other components. In the GREAT context, the output
events are mainly used for logging the system state or triggering messages for bottle
replacement. See Table 11 for a description of the input events, Table 12 for a
description of the output events and Table 13 for a description of the parameters.

Figure 29: Input and output events (left) and parameter settings (right) of the scent module extension.

Table 11: Description of input events of the scent module extension.

Input Description

Connect Tries to connect the node to the module at the address given in the URL parameter.

Disconnect Disconnects from the module and closes all connections

Reboot Causes the Sound module device to reboot.

ShutDown Causes the Sound module device to safely shut down.

Dispense 1 Dispenses scent in slot 1

Dispense 2 Dispenses scent in slot 2

Cancel Stops scent dispensing immediately

Reset 1 Resets the dispense counter for slot 1

Reset 2 Resets the dispense counter for slot 2

Activate Switch to turn on/off activation session (only one session can be active at the same time)

Relax Switch to turo on/off relaxation session (only one session can be active at the same time)

Stop Stop the currently running session

GREAT – AAL-2016-023

69

Table 12: Description of output events of the scent module extension.

Output Description

Connected True if connected to the scent module, False if not

Last Response The last response sent from the scent module

Dispensing Dispensing state of the scent module: 0…ready, 1…dispensing slot 1, 2…dispensing slot 2

Device Fault True if the driver module reports a fault state, False otherwise

Last Error The last error that occurred.

Warning The last warning code that was received.

Warning
Message

The last warning message that was received.

Actuation Reports a pump cycle on the respective slot.

Level Ch1
Low

Indicator that the level for bottle in slot 1 might be low

Level Ch2
Low

Indicator that the level for bottle in slot 2 might be low

Temperature The current temperature in the room

Humidity The current humidity in the room

Barometric
Pressure

The current barometric pressure in the room

AirQuality
Raw

Indicator for AirQuality (the higher the value, the better the air quality and the lower VOC
concentration)

AirQuality
Index

Air Quality Index (experimental): the higher the index, the better the air quality.

Sound Level Reserved for future implementation of a sound level sensor.

Activate Boolean indicating if an activation session is running

Relax Boolean indicating if a relaxation session is running

Table 13: Description of parameters of the scent module extension.

Parameter Description

IP-Address IP-Address or link local name of the scent module

Port The port on which the scent module listens (default 10023)

Auto-
Reconnect-
Interval

Interval in seconds for automatic reconnection if the connection gets lost. 0 means
automatic reconnect is disabled.

KeyStore File The path to the keystore file containing the certificate for connection to the scent module.

KeyStore
Password

The password for the keystore file

Duration The max. duration of a dispense action (overridden by the Duration per channel setting)

Duration per
channel

CSV list of max duration in ms, e.g. 3000,1000 would mean 3 seconds for slot 1, 1 second for
slot 2

Actuations Number of actuations (pump cycles) per dispense action (overridden by the Actuations per
channel setting)

GREAT – AAL-2016-023

70

Actuations
per channel

CSV list of number of actuations per channel, e.g. 2,3 would mean 2 pumps for slot 1, and 3
pumps for slot 2

Current
Actuations 1

Current number of actuations for slot 1 since the last reset

Current
Actuations 2

Current number of actuations for slot 2 since the last reset

Warning Level
Ch1

The number of actuations after which a warning should be triggered for slot 1

Warning Level
Ch2

The number of actuations after which a warning should be triggered for slot 2

Warning
Interval

Defines, after how many actuations the warning should be repeated

Activate
Sequence

Comma separated list of milliseconds after which an actuation should be triggered

Relax
Sequence

Comma separated list of milliseconds after which an actuation should be triggered

Being able to define different times for delayed repeated triggerings of actuations
allows for better fitting of the scent dispensing to room characteristics (e.g. different
air flow in rooms).

6.3. Scent Module Protocol Description

The communication between the scent module extension for the Intefox system and
the scent module hardware is based on TLS secured TCP/IP streams. Every message
received from the client is confirmed by a response from the server running on the
scent module hardware. The server also sends status messages to the client.

The scent module extension and the scent module server must authenticate
themselves using a TLS-Certificate. Only communication between verified peers is
allowed.

Messages are sent using a text-based stream. If multiple parameters are sent along,
they are delimited by spaces or tabs. Each message is terminated by a newline
character.

<cmd [param]><NL>

If the command is accepted by the scent module server, a simple ack message is
sent back. If a command cannot be handled, a nack message is sent back.

6.3.1. Commands from Client to Server:

nop

GREAT – AAL-2016-023

71

This is a keep alive message with no other purpose. If no nop message is received
within 1 minute, the TCP connection is assumed to be lost.

dispense <channel> <duration> [<actuations>]

Triggers a dispense operation for the channel given (1 means first slot, 2 means
second slot) with the specified duration in ms. Optionally also an actuation count
(how many pumps should be applied) can be passed. In this case, the duration
parameter sets the maximum time until the operation should be stopped even if the
actuation count is not reached (e.g. in cases where there is no bottle, or the motor is
blocked).

cancel

Immediately stops the current operation.

system shutdown|restart

Shuts down or restarts the music module.

6.3.2. Commands from Server to Client:

Note, in contrast to the client-server messages, parameters in server-client messages
are delimited by tab, as params can potentially contain spaces in their values.

ack [<status> <channel>]

The command was received and executed. If the command related to a dispense
operation, the status and the channel involved are included.

Available states:

done: the action has completed for channel channel

nack

The command was received but not understood. No action has been taken.

input fault <val>

Signals whether the fault flag is active or inactive (val=1: fault flag set, val=0: fault
flag reset)

warning <type> <message>

GREAT – AAL-2016-023

72

Signals a warning to the client. The following warning types exist:

1: No motor connected?

2: No bottle inserted?

3: Motor blocked?

4: Device busy (e.g. when already dispensing on another channel)

event <type> <data>

Signals an event of type with the specified data.

Available types:

pumped indicates a pump event on a channel

data the channel number for which the pump action occurred

iaq air quality measures

data tab separated list of air quality measures:
temperature,humidity,airPressure,resistance,iaqIndex

soundLevel sound level measure

 data sound level value

6.4. Relevance/Reuse-Potential outside GREAT
The developed scent module can be easily used within Intefox powered smart
buildings, but also allows for easy integration into various other smart building
middleware systems, due to its lightweight and open protocol.

GREAT – AAL-2016-023

73

7. Enocean Repeater

During adaptations to the field test setups at the testing places in Hall and Neumarkt,
reception issues of EnOcean telegrams between the controller and the luminaires
have been discovered. To work around the limited range of EnOcean telegrams, a
special purpose repeater was developed, that besides the standard EnOcean
repeating functionality also offered more customization possibilities regarding which
telegrams should be repeated, as well as a logging functionality of received telegrams
and their signal strength, to assist in finding the best placements of the repeater. This
allowed for analysis of the situations when a luminaire did not handle a switching
command correctly.

The software stack of the repeater module is based on the default Raspbian Stretch
Lite Linux distribution for Raspberry Pi and a simple bridge script to forward EnOcean
telegrams via a network connection. The system is configured as ReadOnly to be
resistant against sporadic power outages.

The bridge script running on the Raspberry Pi is invoked automatically after reboot. It
initializes the TCM310 module and activates the EnOcean repeater functionality (by
default level 1) of the module. It then listens for EnOcean telegrams and forwards them
via UDP to the configured receiver. A simple UDP receiver at the other end will then
receive the raw EnOcean ESP3 telegram information seen by the repeater device (see
Figure 30 for an illustration).

Figure 30: Forwarding of TCP310 EnOcean Telegrams via UDP

In addition to the raw ESP3 telegram the extended ESP3 telegram submitted to the
UDP receiver includes a time stamp as well as the most important info extracted from
the ESP3 telegram like signal strength, sender and receiver information in human
readable format.
[<prefix>]<Time> <RORG> <Sender> <Destination> <Signal> <Data> <RAW ESP3 Telegram>

Example - Data:
Time RORG Sender Destination Signal Data Packet

2020-01-31 10:58:30.559 a5 ffb66493 050e5291 65 28d5007a a528d5007affb664938002050e529141001a

2020-01-31 10:58:30.592 a5 ffb66481 050d3f70 65 28d5007a a528d5007affb664818002050d3f704100c5

2020-01-31 10:58:30.616 a5 ffb66480 050e5291 67 28d5007a a528d5007affb664808001050e5291430058

TCM310 Raspberry PI Receiver
UART UDP

ESP3 extended ESP3

GREAT – AAL-2016-023

74

A detailed list of possible parameters for the forwarding script can be seen in Table 14.

Table 14: Description of parametres fort he repeater script.

Parameter Description

serialPort The UART port to which the TCM310 module is attached to

ipAddress The target IP address or link-local name of the receiver of the telegrams

udpPort The UDP port on which the receiver is listening for telegrams (default 34505)

prefix The prefix to be prepended in front of the raw telegram data (e.g. to identify the repeater)

repeaterMode Defines whether the repeater should operate as level 1 or level 2 EnOcean repeater

signalLevel Only telegrams with a signal level weaker than this threshold should be repeated

This repeater was built as a helper tool for setting up the GREAT system in demanding
environments (long distances, thick walls between the controller and luminaires).
However, it could also be usefull in a context outside of GREAT, whenever EnOcean
installations should be debugged or monitored.

GREAT – AAL-2016-023

75

8. Sensors

8.1. PIR Sensor

PIR (passive infrared) sensors are used to detect motion. The return a simple boolean
value, indicating whether the sensor detects moving persons or not. Changes to this
state are communicated via an EnOcean interface to the Intefox controller and are
logged for further analysis. See Table 15 for the specification of the sensor used.

Motion detection: Standard Thermokon PIR EnOcean, battery powered

Manual switches: Standard EnOcean rockers

Table 15: Thermokon "EasySens" SR-MDS BAT specification

Vendor Thermokon Sensortechnik GmbH (Germany)
Series EasySense
Type SR-MDS BAT
Technical design Wireless
Wireless technology EnOcean ISO/IEC 14543-3-10
Radio frequency 868,3 MHz
Functions Motion detection and brightness

measurement
Motion detection Passive infrared
Detection area 360°; 105° conical (ceiling installation)
Detection radius (2,5 m room height) 3,25 m
Power source 3 x Battery 3,6V 1/2 AA LS14250
Brightness (Accuracy) 0-510 Lux (+/- 30 Lux)
Sleep time interval (modified) 1s – 1000s (for GREAT set to 1 second)

8.2. Biovotion Everion Sensor

The Everion device is worn by one caregiver at each field test location. The device is
worn at the upper arm and can measure either raw data and/or vital parameters.
The raw data mode produces a huge amount of data and is used only for research
and development purposes. The vitals parameters are calculated by functions on
the sensor device itself and cause less data and traffic to handle. Currently the
following vitals can be measured and streamed with a frequency of 1Hz:

• Heart rate*
• Blood Oxygenation or SPO2*
• Skin temperature*
• Skin blood perfusion*
• Steps / Motion*
• Blood pulse wave
• Heart Rate Variability

GREAT – AAL-2016-023

76

• Activity
• Respiration Rate
• Energy Expenditure
• Electrodermal activity/ galvanic skin response
• Barometric pressure

*) clinical grade

Since we are mainly interested in stress detection, the company did implement a
stream to gather the IBI (Inter-Beat-Interval in ms) as shown Figure 31. The IBI is used to
calculate the HRV (Heart Rate Variability) as the HRV itself an important parameter
to detect stress.

Figure 31: Heart Inter-Beat-Interval

8.3. Stress Detection

For the stress index calculation, we rely on results from a past research project where
individual calibrations were made during a learning phase. These individual
adaptions were based on personal feedbacks of the test persons. These are missing
in this project and we had to analyse how the quality was influenced.

There are no standard values or threshold recommendations for some physiological
parameters (esp. heart rate variability HRV). The approach from earlier projects to
identify individual ranges between low and high stress based on personal user
feedback was not possible within the GREAT setup. We therefore needed to develop
algorithms to identify stress thresholds based on historical data und on smart
combinations of additional data based on analytical approaches and data mining
approaches (e.g. plausibility calculations, combination physiological data with PIR
data, time of the day, accelerometer activity profiles etc.).

An additional challenge in this project was to find the shortest timeframe with
enough data to allow a qualitatively good detection of stress. Figure 32 depicts stress
timeframes of 1 hour during the day. In our feedback loop we continuously measure
and calculate the relative stress of the caregiver:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	ℎ𝑖𝑔ℎ𝑠𝑡𝑟𝑒𝑠𝑠	𝑤𝑖𝑡ℎ𝑖𝑛	𝑡𝑖𝑚𝑒𝑓𝑟𝑎𝑚𝑒 =
stress index values > 2

stress index values

GREAT – AAL-2016-023

77

Figure 32: Stress index values and 1-hour phases

8.3.1. Architecture

Customers and users of the Everion device use an App (Android or iOS) to receive
and analyze vital data. For our purpose however, we must further process the data
and can therefore not use this software directly. For our purpose, we use software
provided by Biovotion for research and development tasks. One is the VSM tool to
configure the sensor and another one is the Streamer tool to continuously stream
data. Unfortunately, both tools are only available for Windows. To keep costs low
and to fit into the hardware family used within the GREAT system we tried several
setups with the Raspberry Pi as the hardware device receive streamed data from the
Everion sensor. The most successful option was to use an Android version (Emteria) for
the Raspberry Pi and to adapt the Android app of Biovotion. The source code was
provided by Biovotion and first adaption were successful. But for a complete
adapted software version to many development tasks were left. Therefore, we did
decide to freeze these efforts and continue with the Intel Compute Stick version and
Windows 10 home as shown in Figure 33.

GREAT – AAL-2016-023

78

Figure 33: Everion sensor setup

8.4. Gathering Vital Data (test phase 1)

In the test phase, we gathered vital data (1) for further analysis.

 Figure 34: PC Tool VSM1 pairing with sensor

GREAT – AAL-2016-023

79

8.4.1. Setup

Follow these steps to initialize the Everion for vital parameter measurements and
streaming.

1. Put the Everion device on the charger
2. Connect the Bluetooth dongle from Biovotion with the PC
3. Start the PC Tool VSM1
4. Start scanning the COM port belonging to the dongle
5. The device with its MAC address and the connection signal strength should

appear in the list as shown in Figure 34. Select the sensor and connect.
6. Under the menu item Device Parameter, the sensors configuration can be

changed or just read. The most important parameter is the algo mode. The
following modes are available:

0=VITAL MODE (Light Skin Mode)
1=VITAL_CAPPED_MODE (SPO2)
2=HR_ONLY_MODE (Dark Skin Mode)
4=RAW_DATA_VITAL_MODE
5=RAW_DATA_HR_ONLY_MODE
6=SELF_TEST_MODE
7=RAW_DATA_OFF_MODE
8=RAW_DATA_FAST (64 Hz)
9=MIXED_VITAL_RAW
10=VITAL_MODE_AUTO_DATA
11=GREEN_ONLY_MODE (Battery Saving Mode)
12=RAW_DATA_FIX_CURRENT
13=SHORT_SELF_TEST_MODE
14=MIXED_VITAL_RAW_SILENT
Depending on the algo mode the memory on the device is restructured.
Therefore, this might take around a minute. The modes differ regarding the
data measured and collected. For our use case we use the mode 0 (vital
mode resp. light skin mode).

Galvanic skin response (GSR_ON) shall be set to 1.

The Table 16 lists the vitals measured and streamed in algo mode 0.

7. Close PC Tool VSM1
8. Open Streamer tool and set the configuration as depicted in
9. Close the tool or run the streamer if you want to start the measuring

GREAT – AAL-2016-023

80

Table 16 Vitals of light skin algo mode
St

re
am

Le
n

Ty
pe

C
ou

nt
er

Tim
es

ta
m

p

 0 1-4 5-8 9 10 11 12 13 14 15 16 17 18

Algo1 19 9 T(u) HR(u) HRQ(u) SpO2
(u)

SpO2Q
(u)

PI Act.
Class

Act. Act.
Class
Q

Step
(u)

BPW(u)

Algo2 15 10 C(u) T(u) HRV(u) HRV Q (u) RR
(u)

RR Q
(u)

Energy
(u)

Energy
Q (u)

Raw
board

19 17 C(u) T(u) Impedance
low byte
(u)

Impedance
high byte
(u)

Local
Temp

Local
Temp

Obj
Temp

Obj
Temp

Bar.
Temp

Bar.
Temp

m
bar

m
bar

IPI DB 10+
N*2

22 C(u) T(u)

Table 17: Value specifications

Name Def Dat
a
Typ
e

Byte
s

min
(receive
d)

max
(receive
d)

[offset;
]conversi
on factor

Description

Heart Rate
value
qualit
y

uint8
uint8

1
1

30
0

240
100

1
1

[Bpm]
[%]

SpO2
value
qualit
y

uint8
uint8

1
1

60
0

100
100

1
1

[%]
[%]

Blood Pulse
Wave

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1/50
1

without units
[%]

Perfusion
Index

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1/50
1

[% swing]
[%]

Activity/Moti
on

value uint8 1 0 255 100/255 without units

Activity
Classification

value
qualit
y

uint8
uint8

1
1

0
0

255
100

enum
1

undefined
0 resting 1
walking_fla
t 2
running_fla
t 3
biking_flat
4
walking_up
5

GREAT – AAL-2016-023

81

running_up
6 biking_up
7 rowing 8
other 9
biking 10
running 11
walking 12

Steps value uint8 1 0 255 1 [steps/secon
d]

Energy
Expenditure

value
qualit
y

uint8
uint8

1
1

0
0

255
100

2
1

[cal/s]
not
impl

HRV
value
qualit
y

uint8
uint8

1
1

0
0

255
100

1
1

[ms] (rMSSD)
[%]

Respiration
Rate

value
qualit
y

uint8
uint8

1
1

0
0

255
100

1
1

[Bpm]
[%]

GSR-Sensor value
[Impedanc
e]

uint1
6

2 0 65535 1/3000 ampl[kOhm]

Inter Pulse
Interval (IPI)

value

uint1
6
B12-
15
B0-11

0
0

15
4095

100/15
1

Quality value
[%]
Time in [ms]

The Inter Pulse Interval (IPI) value is a 2-byte value whereas the first 4 bits provide the
quality and the remaining 12 bits the interval in milliseconds.

Example:

Entry in CSV data file:

22,240840,2017/12/08 22:53:31,,62333,
22,240841,2017/12/08 22:53:31,,62382,
22,240842,2017/12/08 22:53:31,,58281,

Leads to the following IBI values

62333 : IPI_Q 15 / IPI 893 mS
62382 : IPI _Q 15 / IPI 942 mS
58281 : IPI _Q 14 / IPI 937 mS

The sum over all IPI values of one day should always be 86400 seconds. The
timestamp is set only once for each page therefore the counter should be
considered for the order.

GREAT – AAL-2016-023

82

Table 18: Quality value specification

0 No IPI values detected, the time will be
filled artificially to reach the 86400
seconds over a day.

1-7 Quality not sufficient (equal to the <50
quality values of vitals)

8-15 Quality is good

8.4.2. Pairing Malfunction Tips

If the device does not appear in a list of the PC Tool VSM1 or the Streamer, then
close the software, remove the dongle and plug it in again. This causes a reset of the
dongle.

If connection problems receide, it might be due to a pairing problem. A pairing issue
arises also, if the device was connected to a smartphone and shall be connected to
the PC or visversa. In all this case unpair the device with the following steps (all data
will be deleted):

1. Put the device on charger (If it is on the charger already, remove it, wait until

the device vibrates twice and put the device on the charger again)

2. Wait, until the blue led is off (now you have 30 seconds to proceed with step 3)

3. Press the button until the device vibrates (as on the picture below)

4. Remove the finger

5. First, a double vibrate indicates that the unpairing was successful. (If there is no
double vibration repeat the steps 1-4), then data deletion is executed. It will
take approx. 40 seconds until your able to reconnect with a mobile device.

8.4.3. Run Data Gathering

The measuring of vital data can be started with the Streamer tool:

GREAT – AAL-2016-023

83

1. Start the tool and open the settings.
2. Pair (connect) it with the sensor by selecting the correct COM port and

pressing the green arrows of the device until the device MAC address
appears and is selectable.

3. Save settings
4. Then start measuring

5. Check if the pairing and streaming start was successful

6. Every time the device is worn at the upper arm, the measurement continues

and the tool streams the values into a file in the users documents and VSM
data folder.

Data file example:

9,137277,2018/02/22 15:36:49,,75,82,60,0,10,1,2,98,0,65,
10,137277,2018/02/22 15:36:49,,56,53,16,83,16,100,
17,137277,2018/02/22 15:36:49,,231,219,3028,2978,2950,9285,
22,219684,2018/02/22 15:33:48,,62315,

The filename follows the pattern as shown in Figure 35. The device id follows
the pattern VSM1-<MAC-Adress>.

7. Create a Windows task to run the upload batch file every evening. The files of
the day will be zipped and uploaded for further analysis to the cloud server of
FHV.

uplodNewFiles.bat

forfiles /s /m "*.txt" /d %date% /c "cmd /c 7z a -tzip @FNAME.zip @PATH"
for /r %%f in (*.zip) do (
 curl -v -F "greatUserID=great" -F "greatPassword=<password>" -F
"upfile=@%%f"
https://uct.labs.fhv.at/glight/livedata/great/uploadBiovotionFiles.php
)
del /s *.zip

Precondition: 7zip tool and curl installed.

GREAT – AAL-2016-023

84

Figure 35: Data file structure

8.4.4. High Stress Triggers

The collected biodata was analyzed together with the systems log files and
feedbacks given by the caregivers. We assume to derive a pattern for the stress
dedection and possible triggers to provide a suggestion for interventions to the
caregivers.

The stress events or triggers are then sent to the intefox fox.core controller for further
dispatchment. To allow for a continuous measurement and stress calculation, a small
Java program has been created, that constantly reads vitals from files created by
the Biovotion Streamer and forwards information to the fox.core system.

8.4.5. Integration into the GREAT System

To directly pass information from the Biovotion system into the GREAT system, a
system extension for the fox.core has been developed, that receives data from the
Biovotion system via a TCP stream. Heart rate statistics currently supported are heart
rate average and average/maximum/minimum/standard deviation of RMSSD as a
measure for heart rate variablility. Each data transmission also includes a timestamp.
Information is encoded in key-value-pairs delimited by commas. Also stress events
can be forwarded to the GREAT system using the same interface.

GREAT – AAL-2016-023

85

The GREAT system extension takes data from the incoming TCP stream and makes
the individual channels available as events for connections inside the GREAT system
as well as for logging (see Figure 36).

Figure 36: Integration of Biovotion HRV statistics into the GREAT system.

GREAT – AAL-2016-023

86

9. User-Interface for Manual Control

For the functional testing period a remote-control tool was created based on the
existing Intefox mobile app that’s available for iOS and Andorid devices. The
configuration was created to allow for an easy control of the separate
light/scent/sound-modules.

Figure 37 shows the main menu (left), the scent- (middle), and sound-module (right)
offering control for starting an activation or relaxation session.

Figure 37: Screenshots of the main menu, the scent-, and sound-module offering control for starting an
activation or relaxation session.

Figure 38 shows the control page for the light. When the light is switched on without
further action, a biodynamic light is applied throughout the day. The interface allows
to choose activation or relaxation interventions, as well as predefined light scenes for
quickly applying a norm light or a scene fitting for watching TV.
The second screen shows the status of the PIR sensor, delivering brightness values (in
lux) and motion status.

This interface hosted by the Intefox app is only intended for manual control and test
setups. See chapter GREAT User-Interface for the simplified interface used by actual
users during the field test phase.

GREAT – AAL-2016-023

87

Figure 38: Screenshots of the light control page and the status view for the motion detector.

GREAT – AAL-2016-023

88

10. GREAT User-Interface

One of the main requirements for the user interface for the system was that the
GREAT system should be easy to use by care giving personal or even elderly users of
the system directly. This requirement could not be fulfilled with the standard Intefox
mobile app. Therefore, a dedicated user interface for triggering activation and
relaxation interventions has been developed.

The basic idea was to reduce the number of elements to the absolute minimum to
make it clear where functionality is located and to guide through the processes of
starting or modifying a specific intervention. During the project phase, several
versions of the user interface have been developed in an iterative human centered
design process.

The user client was implemented as a cross platform web application based on the
Vaadin framework. It features a responsive design to allow for flexible use on a broad
range of devices of different sizes. During the GREAT field tests, tablets have been
used as main controlling device.

The start screen of the user client shows all available GREAT areas with buttons for
launching activation or relaxation sessions. Depending on the configuration, also
interface elements for additional functionality (like a special scene for norm light or tv
watching) can be shown. See Figure 39 for an illustration of the maximum
configuration and Figure 40 (left side) for the start-screen setup used during the GREAT
field tests.

Figure 39: GREAT user client main screen with all elements enabled.

GREAT – AAL-2016-023

89

Figure 40: GREAT user client: starting an intervention

After an intervention is selected, it is possible to select or deselect available
light/scent/sound modules individually for the intended intervention. If no action is
taken, the default setting will be used automatically after a timeout. In this way, only
one button touch is required to start an intervention with the default set of modules.
Figure 41 shows the customization screen on the left and the status feedback screen
on the right, where it can be seen, which modules are active and for how long the
currently active intervention will run. Note that there is also always an option to stop
any ongoing intervention preliminarily by the user at any time.

GREAT – AAL-2016-023

90

Figure 41: GREAT User client with customization optinos before the intervention (left,) and status
feedback and cancel option during an ongoing intervention (right)

After the intervention has completed, users get the possibility to respond with a
feedback, whether they think the intervention helped or not. It also provides an
additional text input flield to submit further information or comments (see Figure 42).

GREAT – AAL-2016-023

91

Figure 42: GREAT User client: after an intervention (asking for feedback)

Configuration - Setup (fox.configurator)

The configuration of the user interface can be done via the fox.configurator
software. Note that for the final GREAT product, the configuration is envisioned to be
created automatically based on which modules are installed (see chapter Setup
Procedure of the Final GREAT Product for the envisioned setup process of the final
product).

The manual steps involved in setting up a web-based visualization client:

As a first step a user for the great user client and a visualization page needs to be
added. The added user can then be assigned to the visualization page created (see
Figure 43).

GREAT – AAL-2016-023

92

Figure 43: Assigning a user to the GREAT user client

In a next step available GREAT room objects can be added to the visualization page
by dragging and dropping them onto the visualization icon. All room objects that are
added in this way, will then be shown in the visualization (see Figure 44).

Figure 44: Assigning a Light curve object to the GREAT user client

Then a GREAT user client object needs to be added to the configuration. The
previously created user can then be assigned to this object. By specifying a path
over which the client can be reached, multiple instances of visualizations could be
created for different users (see Figure 45).

GREAT – AAL-2016-023

93

Figure 45: GREAT user client settings

In the example shown above, the user client would be accessible in the web browser
by the address:

https://<ip-of-controller>:8080/great

This bookmark can then be saved to the homescreen of Andorid or iOS devices,
resulting in a GREAT Icon on the homescreen by which the application can be
launched easily, without having to type in the address repeatedly. The application
will then also be shown in fullscreen, without any potentially disturbing browser
controls.

Finally, to customize available options visible in the user client, modules and special
light scenes can be activated or deactivated in the settings for the GREAT room
object (see Figure 46).

Figure 46: GREAT user client room settings ot enable/disable modules and buttons

GREAT – AAL-2016-023

94

11. GREAT Manager

The GREAT Manager is a web-based user interface for expert users, that allows for
customizing stimuli used by the GREAT system for activation and relaxation. The
configurations are stored by a backend system that communicates with the local
GREAT system via REST APIs.

The system is comprised of a Curve-Editor, a Playlist-Editor, a Schedule Editor and a
Data-Download area that allows for offline analysis of field test data (see Figure 47
for an overview).

The GREAT Manager features a fine-grained permission control system (see Figure
49). This allows for limiting access for users to certain installations – meaning users can
only edit configurations of installations officially managed by them. Also, the offered
features can be limited to certain aspects on a per user basis (e.g. a user could only
be allowed to adjust his playlists but wouldn’t be able to edit any schedules).

Figure 47: The GREAT Manager system structure consisting of a web-based front end for administration,
the backend services for configuration/data persistence and the local GREAT devices communicating
over a REST API with the backend.

The GREAT management web interface is built on top of an open source Apache /
PHP / MySQL software stack. The GREAT management backend stores configuration
data in the data model shown in Figure 48.

Curve Editor

GREAT Manager Services

Config - Store

https (JSON)

REST InterfacePlaylist Editor

Data Downloads
https (JSON)

https (JSON)

Data - Store

GREAT Datalogger Services
https (JSON)

Schedule Editor
https (JSON)

REST Interface

Webbased UI

Controller

GREAT Services
FHV Cloud

Devices

GREAT – AAL-2016-023

95

Figure 48: Data model of the GREAT Manager backend

Figure 49: Login and main menu of the GREAT Manager interface

The GREAT Manager (see Figure 49 for the basic functionality) also keeps track of the
history of configurations. This history is mainly used as input for analysis of field test
data but can also be used to easily reactivate previous configurations again. The
editors also allow for defining new configurations that will be activated at a specific
date in future.

11.1. Curve Editor
The curve editor allows for customization of the light curves used for activation and
relaxation sessions, as well as those for biodynamic lighting and static scenes like TV
light or Norm light.

Light curves are defined by a list of values of color temperature, brightness direct
level, and brightness indirect level at specific points in time. While the biodynamic
curve is defined over a period of 24 hours, activation or relaxation curves are defined
for specific durations like for example 21 minutes (activation) or one hour
(relaxation).

The values of the curve can either be manipulated by dragging curve points inside
the diagram, or by entering values into the table. To define a curve that should be

User Key

LocationAccess
Right

CurveCollection
Access
Right

SceneCollection

LocationObject

Zone

Playlist Schedule

ScheduleEntriyPlaylistEntry

Scene

Curve

CurvePoint
Definition

CurvePoint
Entry

SoundAvailable

ParamTypes

assignedTo >

*

0..1requiredBy >< r
eq

uir
ed

By

*

0..1

0..1

*

0..1

*

0..1

*

<unlockedByun
loc

ke
dB

y>

<providedFor

providedFor ><locatedAt
1..*

< assignedTo

1

*as
sig

ne
dT

o > 1

*

describedBy >
*

11

*
describedBy >

5
consistsOf >

< assignedTo
1

*
assignedTo >

1

1.*
describedBy >

1

*

usedBy >
*

0..1

1

1

GREAT – AAL-2016-023

96

activated on a specific date in future, an effective date can also be specified for
the curve (see Figure 50 for the lightcurve editor interface).

Figure 50: The lightcurve editor screen allows for customizing light curves

Note that a curve can only be saved as a new curve. All previous versions are
retained by the system for documentation purposes of the field test configurations.

11.2. Schedule Editor

The schedule editor allows for defining time-schedules when certain interventions
should or may be triggered automatically by the system. Either interventions are
directly triggered at defined points in time, or a time frame is configured within which

GREAT – AAL-2016-023

97

the system is allowed to perform fully automatic interventions (e.g. based on a
learned motion activity profile).

Figure 51: Schedule editor for creating schedules when certain interventions should be triggered.

Schedule entries can also be attached to a certain condition. Currently the following
conditions are supported:

- Always
- Never (entry is deactivated)
- If presence (triggered only if presence is detected at that time)
- If no presence (triggered only if no presence is detected at that time)
- On next presence (triggered the next time presence is detected)
- On next no-presence (triggered the next time when no presence is detected

anymore)
- If recommended (triggered when the system deduces that it would be

appropriate)

Schedules defined in this way are delivered by the schedule service to the local
GREAT controller (see Figure 2). On the local controller, a developed OSGi based
Schedule extension for the Intefox system is responsible for requesting and processing
the schedule.

From the system perspective, the scheduler object is an alternative input for the
remote-control input. Figure 52 shows available connections for the scheduler
extension and its parameter settings. Table 19 lists the meaning of the inputs, Table 20
the meaning of the outputs and Table 21 the meaning of the parameters for the
extension.

GREAT – AAL-2016-023

98

Figure 52: Inputs/Outputs and properties of the GREAT-Scheduler extension

Table 19: Inputs of the scheduler extension

Input Description

Download
Schedule

Tries to download the most recent schedule at the configured URL

Current Curve The currently active light curve of the light

Power The current power status of the light

Activate The current state of Sound activation

Relax The current State of Sound relaxation

Activate The current state of Scent activation

Relax The current state of Scent relaxation

Presence The current presence state in the room

Brightness The current brightness in the room

Start Activate/deactivate the scheduler service (true/false)

Table 20: Outputs of the scheduler extension

Output Description

GREAT – AAL-2016-023

99

debug Current state code for debugging

debugText Debug text (only for development)

debugText The currently active light curve of the light

State Indicates if the scheduler is running

Light:

Biodynamic Indicates whether the biodynamic curve should be active

Activate Indicates whether the activation curve should be active

Relax Indicates whether the relaxation curve should be active

Norm Indicates whether the Norm light scene should be active

TV Indicates whether the TV light scene should be active

Power Indicates thether the light should be turned on

Sound:

Activate Trigger to start the activation session on the sound module

Relax Trigger to start the relaxation session on the sound module

Stop Trigger to stop the current session on the sound module

Scent:

Activate Trigger to start the activation session on the scent module

Relax Trigger to start the relaxation session on the scent module

Stop Trigger to stop the scent current session on the scent module

Intervention Combined intervention including light/sound/scent to connect to the GREAT node

Table 21: Parameters of the scheduler extension

Property Description

Schedule URL The URL from where to fetch the schedule

Schedule
Config

The currently active schedule In a simple text format that can be copy/pasted.

Time Shift Time shift in seconds if the whole schedule should be shiftet by a specific amount of time

TickerInterval The time interval within which scheduler actions should be checked (default: 1s)

Debug Mode Flag to enable debug mode (default: false)

Min Delay
Activations

The delay between activation sessions

Min Delay The delay between relaxation actions

Min Delay
Activation To
Relaxation

The minimum delay between activation and relaxation sessions

Min Delay
Relaxation To
Activation

The minimum delay between activation and relaxation sessions

Overrule
Running

Flag to indicate if the scheduler is allowed to override currently running sessions

Autostart Flag to indicate if the scheduler should be automatically started

Retry to start If the start of the scheduler fails, the time for retry interval

GREAT – AAL-2016-023

100

11.3. Playlist editor

The playlist editor allows for customization of playlists that should be used for
activation and relaxation sessions. It offers officially supported sounds for selection,
but also allows to specifiy custom sounds referenced by a URL (see Figure 53).

Figure 53: Playlist editor for customizing sound playlists for activation and relaxation sessions.

Also, the playback mode can be set in the interface (random order, repeating,
single track repeat).

The sound module extension requests the most recent playlist either by an explicit
command, or automatically at specified intervals. It then forwards the request to the
sound module, which then downloads the playlists containing the sound references
(see Sound Module Protocol Description). It then checks if all sounds of the playlists
are already on the sound module. If not, sounds will be downloaded in the
background to the sound module.

GREAT – AAL-2016-023

101

11.4. Data Download Area

The data download area is an interface to download specific data packages from
the field test locations for offline analysis. It allows to specify the location, the zone,
and timeframe to limit the size and focus of the download (see Figure 54).

Figure 54: Data download area for downloading packages for offline analysis.

For now, the data download service is intended for field test use only. It provides a
standardized way for accessing data for offline analysis. Every download is logged
by the system.

GREAT – AAL-2016-023

102

12. Automated Control System

According to the concept of mood transfer, moods not only influence an individual
person but may affect the behaviour of a social group as a whole. In the literature,
we also find the terms “emotional contagion” or “group affect” (see e.g. [1, 2, 3, 4,
5]). The terms emotion, affect, and mood are often used interchangeably, but they
refer to different states of feeling. Emotions are specific feelings that arise in response
to a particular stimulus. Moods are more enduring global states. Affect is the general
valence (positive or negative) of that state and accounts for much of the variance
in the state [6]. According to the Diagnostic and Statistical Manual of Mental
Disorders [7] criteria, depression, for instance, is persistent low mood or loss of interest
in activities once enjoyed.

Group emotion researchers such as [3], [5] or more recently [8] often examine the
explicit and implicit mechanisms through which group emotion is shared. These may
include emotional contagion, vicarious affect, behavioural entrainment and
interaction synchrony, i.e. the tendency for group members to automatically adjust
their behaviour to synchronize with other members’ behaviour.

In our project, we have originally found the concept of mood to be most
appropriate for two reasons: On the one hand, affect tends to be examined as an
individual-level phenomenon, even though some authors also have focused on
group affect [9]. On the other hand, the concept of emotion contagion is
associated with the disease metaphor which suggests that simply being in contact
with another person puts you in a similar condition. Besides, we have been
influenced by a study conducted by [10], which examined the effects of 3
behavioural interventions on the mood in nursing home residents with Alzheimer’s
disease.

As mentioned before, a mood change may trigger either activation or relaxation on
the part of PwD, our target population. In the project we induce mood changes by
adjusting the room ambiance in terms of light, sound and scent. As far as sound is
concerned, we use natural sounds such as the twittering of birds (for activation) and
the rippling of water to achieve a soothing effect. With regard to scent we use
mixtures from a professional vendor (Primavera Life GmbH). For activation the
ingredients include orange, lime and lemon, whereas for relaxation, rose is the main
ingredient. However, the care facilities may use their own scents or preferred
mixtures.

Our luminaire contains modules for direct lighting (task light) and indirect lighting
(ambient room lighting) with about 110 watt light power each. Colour temperatures
can be changed seamlessly from 2200 K to 5700 K with a luminous flux of about
10200 lm which results in about 1000 lux for the illuminated area. Whenever an
activation or relaxation intervention is triggered, the light temperature as well as the
brightness gradually changes according to the pre-defined lighting curves.

GREAT – AAL-2016-023

103

12.1. Measuring stress

Stress measurement methods can be divided into two categories: psychological
questionnaires and physiological measurements. The most accurate result will
probably come from combining a reliable physical measuring method with self-
assessment. Physiological stress may be measured by monitoring heart rate
variability, breath frequency, blood pressure, and by measuring different stress
hormones such as cortisol which is found in blood, urine, saliva, and hair.

Saliva is considered one of the best biomarkers of stress and sampling is noninvasive
(as opposed to venipuncture or blood tests). During stress the adrenal cortex releases
stress hormones within seconds. It takes about one to two minutes until the shift in
hormone levels (especially cortisol) can be measured in saliva [11, 12]. However, at
least for the time being, one still needs a laboratory for the measurements which is
why we have opted for using heart-rate variability and activity parameters instead.

Heart-rate variability is a well-established measure for agitation, i.e. a feeling of
restlessness or extreme arousal. Arousal is crucial for motivating certain behaviours
but PwD often have problems with self-regulating arousal. Instead of measuring
agitation levels of PwD, we measure them indirectly via the stress levels of the
caregivers. It goes without saying that it would be more accurate and reliable to
take measurements directly from the patients. However, due to ethical
considerations associated with highly vulnerable persons who in most cases are not
able to give their informed consent, this has not been possible.

Based on the mood transfer concept we intended to use the activation level of the
whole group (measured by optical motion sensor) and the activation level of single
carers (measured by mobile physiometer) as mood indicators. For measuring the
activation levels within a particular area, we used passive infrared sensors (PIR) with
low latency and high sampling rate. For the measurement of HRV and additional
physiological parameters we used the upper arm vital sign monitor Everion from
Biovotion.

12.2. Machine learning

We set out to develop algorithms to detect situations when an intervention may be
useful. This means the system had to learn from interventions triggered by carer
givers. Whereas a care giver may assess and judge a situation based on his or her
experience and expertise and use a host of different criteria the system has to rely on
a reduced set of parameters, i.e. the stress levels from caregiver, activation levels or
actions invoked previously by care givers.

Our machine learning approach consisted of two main phases: a) feature
engineering and b) setting up the machine learning pipeline (classifier training,
validation and selection) as illustrated in Figure 55. The following paragraphs describe
the general approach. Chapter 12.3 then lists some of the challenges to the
envisioned approach before chapter 12.4 describes the concrete implementation in
more details.

GREAT – AAL-2016-023

104

Figure 55: Machine learning approach with classifier variants

First, we labeled data captured from the various sensors with «intervention» and «no
intervention» to create training data for our supervised machine learning approach.
The machine learning process itself starts with a data cleansing phase where we
check for any outliers or inconsistent data points. After this preparatory phase, the
feature engineering phase can begin [13].

a) Feature engineering phase

Based on the raw inputs provided by the sensors (PIR and Everion), relevant features
needed to be engineered. Possible candidates were: HRV signal before and after
contact of the carer with PwD (within a pre-determined time window), time of data
capture, normalized stress level of carer, activity level of PwD. The list of features is
not pre-defined. Rather, finding or designing appropriate features is an integrated
part of the research effort of this project and the first outcome of the machine
learning process.

Figure 56: Stress Index and intervention events (scent and sound)

Figure 56 depicts an example of recorded data. The normalized stress index derived
from the heart rate variabilities of the carers and the motion samples are feature
candidates for learning. The manually triggered system interventions with activating
or relaxing scent and sound are labels for learning corresponding predictions which
should be translated into recommendations about interventions. The view samples of
interventions point out the problem of the small amount of labeled data available for
learning, which might lead to poor learning performance.

GREAT – AAL-2016-023

105

b) Setup of the learning pipeline

The machine learning pipeline consists of the software implementation of the feature
extraction, classifier learning, validation and testing. The extracted features are used
to train a classifier to predict intervention situations based on the input features.
Additionally, a classifier may suggest different actions a carer could pursue given the
value of the input features, i.e. to trigger the system to activate the PwD, to relax the
PwD or to do nothing.

For the machine learning based classification, several candidate methods, e.g.
logistic regression, decision tree-based classification or support vector machines
exist. The final choice of classifier is determined by their performance on the
gathered field test data and largely depends on the number of features and data
points that are available. Performance is compared according to classical
evaluation criteria like true positive rate, false positive rate, precision, recall and F1
scores.

Figure 57: System trigger points for learning the trigger situation

Figure 57 depicts an example of trigger points. Relevant segments of input data for
learning are the ones before an activation or relaxation event. Some segments may
also relate to situations, when no system interaction is required. The data right after
an intervention will not be used for learning (blocked time frame) because of the
influence of the intervention itself. The length of the segments is a parameter which
also has to be evaluated in different learning settings.

Once the system has learned to identify situations calling for intervention, it sends
recommendations to the carers via the GREAT UI. The carer can then follow the
recommendation, which results in its reinforcement, or he or she can just ignore it,
which results in its weakening or abandoning. The number of high-quality
recommendations should increase over time as a result of this training approach.

GREAT – AAL-2016-023

106

12.3. Challenges and coping strategies

In the course of implementing our approach we have expected and encountered a
number of challenges for which we have been trying to find solutions. These include
the following:

Very limited set of parameters and test cases.

Due to the vulnerability of the group and the resulting difficulty of obtaining ethical
approval we have decided to measure the stress level of the actual target
population, i.e. PwD, indirectly via the caregivers. This caused a significant increase
in the noise of our measurements since other factors that are completely unrelated
to the presence or interaction with PwD might induce stress for caregivers such as
financial or family issues.

Also, it takes a much longer time to reach a significant number of actual test cases
than originally expected. In 10 out of the 12 locations, we observed only a single
intervention situation per day on average. We expected to have a few hundred
interventions per location by the end of the field trials, but this was not the case. The
low number of cases effectively limits the possible quality of any classification
algorithm. Additionaly, the big asymmetry between intervention cases and non-
intervention cases makes it less appropriate to use neural network-based
approaches.

Care givers seem to be too occupied with their daily work to also keep in mind that
they could use an additional system to help improve the mood of all, especially if the
effects are not immediately recognizable.

Coping strategy:

Instead of a classical supervised learning approach for the intervention
recommendation, the final GREAT product might be more successful to apply an
anomaly-detection based algorithm (unsupervised learning).

We might get more useful outcomes if we could use additional parameters and/or
different approaches, e.g. automated image-based analysis of activities in the room,
however, this imposes a bi gprivacy concern.

Problems to detect apathy.

Room sensors cannot differ between a person doing nothing and no person in the
room. The measured room activity can also overlay a patient’s activity. If the
potentially passive PwD is within a room of active individuals, the measured activity
level is misleading.

Coping strategy: Currently, we try to focus on those PwD in our measurements who
tend to move in areas with just a few or no other patients. To improve the
identification of passivity we could use motion sensors with higher resolution, which

GREAT – AAL-2016-023

107

can even detect smallest movements, or image-processing based solutions as
mentioned above.

Lack of thresholds for stress.

Stress levels are influenced by a vast number of factors. The body’s response to
stressful situations varies strongly between individuals. We implemented and
extended machine learning algorithms from one of our previous projects,
SmartCoping [19, 20], which integrated an approach to calibrate individual stress
during a learning phase.

Coping strategy: To compensate for the missing learning phase in this project, we
adapted the algorithm to calculate individual stress levels from low stress and high
stress levels detected during baseline measurements.

Difficulties related to attributing stress to particular causes.

Another challenge is to distinguish between stress induced by patient situations or
moods and stress induced by patient-unrelated causes or circumstances. The latter
could be issues concerning a person’s private life like relationship problems, illness or
pain, money worries etc. as well as stressful situations at the workplace unrelated to
the patient, e.g. a conflict with one’s colleagues or the management.

Besides, it is difficult to distinguish between physically induced stress and mental
stress. If a carer has to accomplish physically demanding tasks like carrying heavy
loads or climbing upstairs, the HRV changes.

Coping strategy: It is possible to identify some of those situations, esp. those related to
physical effort, by using the accelerometer integrated into the sensor.

With regard to stress caused by patient-unrelated causes, we have to rely on the
observations of our study nurse made in the course of dementia-care mapping
conducted during the field tests. The study nurse also conducts so-called “situational
conversations” immediately after interventions to obtain the subjective assessment of
the caregivers. By combining these methods, we should be able to ascertain the
causes of stress in particular situations. However, this data will not be available in a
live system and can only be used as “pseudo-intervention” input for learning.

Acceptance problems.

The body sensors worn at the upper arm were found to be uncomfortable by some
of our test persons who complained about skin irritation from wearing the sensors
several hours every day. Others reported itchiness due to sweating or skin pressure.
The need to put the sensor into a cradle every day has not caused any problems,
since the battery lasted a lot longer than a normal day shift.

During the field tests, the reluctance to wear the sensors led to very little overlapping
data-point where also interventions were triggered.

GREAT – AAL-2016-023

108

Coping strategy:

The body-worn sensor would deliver valuable information about stress levels of the
wearer when worn, however, as experience showed during the field tests, we cannot
rely on obtaining data from them as caregiving personal is reluctant to wear them.
For the learning algorithm this means that we need to mainly rely on room sensor and
intervention data as input.

For the final GREAT product, a possible approach would be to use wearable devices
that also provide directly useful features/information for the wearers. Maybe a
dedicated SmartWatch that also offered some kind of status info, reminders and
feedback opportunities would be more accepted.

12.4. Implementation

Within GREAT machine learning approaches are used on two levels: the stress level
identification based on HRV measures from the Biovotion sensor, and the
recommendation engine for interventions for care givers.

Since the stress level identification algorithm has been derived in a previous project
by a project-partner and adapted for the limitations within GREAT as outlined above,
this description details the approach of the intervention recommendation engine for
GREAT based on room sensor and intervention usage data.

12.4.1. Feature engineering

PIR sensors used for detecting motion typically output an on/off signal, showing
whether it currently detected motion or not. The PIR sensors used in GREAT transmit
their binary state over air by the EnOcean protocol to the main controller. The
controller then adds a timestamp to the motion event and logs it in the GREAT
database. In addition to PIR sensors, also air quality data is obtained by Bosch BME
680 IAQ sensors integrated into the scent dispensers. This data is also logged with a
timestamp by the controller. Motion and air quality measures could both be an
indicator for changes in activity levels and thus form a basis for intervention
recommendation. Note that the air-quality sensor has been added due to concerns
that motion by itself might not be a sufficient indicator for recommending helpful
interventions.

To get better characteristics of motion based on the binary signal of the motion
detectors, we analyse the signal over a time frame of 5 minutes. Within this
timeframe we derive two important measures as an indicator of motion activity: The
relative period of motion within the timeframe (called integral), and the count of
fluctuations of the signal within the period (called cnt). While the first one shows the
overall (and possibly) continuous motion activity within the period, the second one
captures dynamic characteristics (e.g. if it was a steady flow of motion, or highly
interrupted).

GREAT – AAL-2016-023

109

Figure 58: Binary motion data characterization within a time frame.

The same approach can also be used for analog data like air quality, where the
integral parameter reflects the relative area under the curve, and the cnt parameter
the stability of the signal. In addition to this, also standard deviation and arithmetic
average are calculated. To also take dynamics of these values over time into
account, we keep values of previous timeslots as a reference, which allows us to
calculate the difference of values between time frames.

To get an idea of the usefulness of our derived parameters we visualized data in
scatter plots to show relationships between two parameters and the intervention
state. Figure 59 shows a visualization of possible relationships between the different
calculated parameters and manually triggered intervention events. Blue points mark
time slots without interventions, whereas orange points show manually triggered
interventions.

As triggered interventions might also have a time and date specific component to
them, as can be seen in Figure 59, we also included those in the feature vector. A
typical feature vector for classification that contains time, motion, airquality and
optionaly HRV information looks like the following example, where n is the number of
previously observed timeslots that should also be considered:

featureVector = [

dayNum, relSecond,

activityt0, activityt-1, activityt-2,…, activityt-n,

activityDifft0-t1, activityDifft1-t2,…, activityDifftn-1-tn,

airQualityt0, airQualityt-1, airQualityt-2,…, airQualityt-n,

airQualityDifft0-t1, airQualityDifft1-t2,…, airQualityDifftn-1-tn

hrvt0, hrvt-1, hrvt-2,…, hrvt-n,

hrvDifft0, hrvDifft-1, hrvDifft-2,…, hrvDifft-n,

]

ttendtstart Timeframes for Interventionanalysis

integral = filledArea/duration

cnt = number of value changes

ttendtstart Timeframes for Interventionanalysis

GREAT – AAL-2016-023

110

Figure 59: Relationship among two parameters and intervention state (blue...no intervention,
orange...intervention)

Of course, there are many more possibilities to come up with additional inputs for the
feature vector (e.g. different statistical measures within the timeslot). Further testing,
experimentation and evaluation will be needed to be done in the timeframe until
the release of GREAT as a product, and even afterwards, data from real life use will
have to be analysed to further optimize the system.

12.4.2. Processing pipeline of the learning system

The GREAT learning system is implemented using a distributed approach. While all
required components run on the same local controller, they run in separate
processes. This enables us to use open source machine learning frameworks with a
wide range of available classifiers, in a loosely coupled manner without introducing
direct dependencies in the core system.

GREAT – AAL-2016-023

111

Figure 60: Learning system pipeline from live events to recommendations

Figure 60 shows the current version of the processing pipeline from live events to the
final recommendation. Live events are processed inside the GREAT middleware using
the RunningWindowEventProcessor extension. This extension generates a feature
vector, that is passed to an external classification component over a TCP stream. The
classification result is then again forwarded to the GREAT system, where a filter
extension decides whether to pass on the recommendation to the UI client or to
ignore it due to current state restrictions or defined rules. This filter stage allows for
effective plausibility checks of classifications, while also providing a mean for
enforcing customer defined restrictions on the system (e.g. only allow automatic
recommendations within a specified timeframe).

The external InterventionClassifier is based on the open source WEKA framework 1 for
machine learning, which allows us to flexibly train and adapt classifiers.

With a feature vector like described above with integral and cnt-parameters for
motion and integral parameters for airQuality and a history depth of 3 time slots we
obtained the best classification results with a RandomForest classifier. We used a k-
fold cross validation with k=10, instead of a fixed percentage split of training and test
data to get to most of our small data set.

Table 22: Performance metrics of classifiers for the given feature vector on the field test training set

CLASSIFIER TPRATE FPRATE PRECISION RECALL F-
MEASURE

MCC ROCAREA PRCAREA CLASS

RANDOM
FOREST

0.824 0.112 0.816 0.824 0.82 0.711 0.93 0.906 Activate

 0.71 0.105 0.714 0.71 0.712 0.606 0.913 0.811 Relax

1 https://www.cs.waikato.ac.nz/ml/weka/

Intervention
Classifier Filter Recommendation

on UI

RunningWindow
Event

Processor

motion
airQuality
time
[HRV]

Extracts features
over a running window of
5 minute timeslots,
keeps history for n timeslots

Retraining of classifier
at regular intervals
with historical data

liv
e

fe
at

ur
e

ve
ct

or

cl
as

si
fic

at
io

n
re

su
lt

re
co

m
m

en
da

tio
n

Rules

Current
state

Live
events

day
relSecond
motionIntt0,t-1,t-2,…t-n
motionIntDifft0,t-1,t-2,…t-n
motionCntt0,t-1,t-2,…,t-n
motionCntDiftt0,t-1,t-2,…,t-n
airQualityIntt0,t-1,t-2,…,t-n
airQualityIntDifft0,t-1,t-2,…,t-n
airQualityCntt0,t-1,t-2,…,t-n
airQualityCntDifft0,t-1,t-2,…,t-n
[hrvt0,t-1,t-2,…,t-n]
[hrvDifft0,t-1,t-2,…,t-n]

none, relaxation,
or activation

interventions only in specified time frame
no intervention may currently be running

GREAT – AAL-2016-023

112

 0.789 0.113 0.795 0.789 0.792 0.678 0.93 0.891 No
Intervention

MULTILAYER
PERCEPTRON

0.706 0.135 0.752 0.706 0.728 0.579 0.838 0.768 Activate

 0.625 0.141 0.613 0.625 0.619 0.481 0.813 0.599 Relax
 0.787 0.152 0.753 0.787 0.769 0.629 0.881 0.795 No

Intervention

LOGISTIC
REGRESSION

0.681 0.12 0.772 0.681 0.724 0.577 0.825 0.781 Activate

 0.275 0.086 0.539 0.275 0.364 0.243 0.67 0.417 Relax
 0.85 0.357 0.569 0.85 0.682 0.473 0.778 0.563 No

Intervention

SMO 0.674 0.167 0.707 0.674 0.69 0.512 0.763 0.635 Activate
 0.105 0.062 0.382 0.105 0.165 0.072 0.561 0.299 Relax
 0.857 0.409 0.538 0.857 0.661 0.433 0.733 0.52 No

Intervention

LOGITBOOST 0.792 0.094 0.834 0.792 0.813 0.705 0.939 0.913 Activate
 0.71 0.099 0.724 0.71 0.717 0.615 0.912 0.818 Relax
 0.782 0.159 0.732 0.782 0.756 0.615 0.913 0.873 No

Intervention

Table 22 shows the performance characteristics of different classifiers tried with the
field test training set. It’s interesting to note that the performance for activation
interventions identification is better than for relaxation interventions. This might be an
indication, that motion activity by itself (or the lack thereof) can be a predictor for
activity interventions, but not so much for relaxing interventions.

In the context of GREAT the false positive rate is a much more critical factor, than the
true positive rate, as accidentally triggered interventions are more irritating, than
missed intervention suggestions. The reasons for the still high error rate might be due
to the fact that we have to deal with an uneven distribution of None-
Intervention/Intervention cases (e.g there are much more cases where the system
shouldn’t trigger an intervention, than there are for triggering an intervention)
combined with a relatively small training set of only 3700 interventions in total, which
are then split up for each zone at locations.

In a next step of development, we would therefore recommend looking into
anomaly detection algorithms as a supplement to the classification tasks. For this a
history enriched version of our processing pipeline might be suitable, like shown in
Figure 61.

GREAT – AAL-2016-023

113

Figure 61: Extended learning system pipeline for considering historical data points too.

This architecture also allows for a flexible extension of the system with further input, in
case new sensors are added to the system.

Currently the machine-learning based recommendation system is an experimental
unit of the GREAT system. Further usage data needs to be gathered to provide a
machine learning based recommendation system that’s sufficiently reliable for use in
the wild.

In chapter 12.5 and 12.6 we present alternative approaches for our automatic
control system, based on experiences made during the field tests.

12.5. Schedule based operation

While working with our partners from the field test locations, we learned that
especially in clinical/elderly home settings care givers are extremely occupied by
their day-to-day tasks. Having a system, where they can manually trigger
interventions to help them calm or activate persons may be useful to them, but they
often forget about its existence besides all the other important things they have to
keep in mind. In our field tests this led to a very low number of interventions from
which we/our system could learn.

Since the daily life in a clinical setting is very structured, we decided to also
implement a feature for schedule-based triggering of interventions, to reduce the
mental burden for the care givers while still using our system. For this, care givers
provided us with a schedule when they usually wanted people to be active or

Intervention
Classifier Filter Recommendation

on UI

RunningWindow
Event

Processor

motion
airQuality
time
[HRV]

Extracts features
over a running window
of 5 minute timeslots,
keeps history for n
timeslots

Retraining of classifier
at regular intervals
with historical data

liv
e

fe
at

ur
e

ve
ct

or

cl
as

si
fic

at
io

n
re

su
lt

re
co

m
m

en
da

tio
n

Rules

Current
state

Live
events

none, relaxation,
or activation

interventions only in specified time frame
no intervention may currently be running

Feature
Processor/
Extender

History Event
Profiler

Event
DB

Historical feature vectors from yesterday
and week ago

ex
te

nd
ed

 fe
at

ur
e

ve
ct

or

Attaches matching
historical references to
the feature vector (e.g.
corresponding
timeslots from the day
before, and the week
before)

Might also include
anomaly detection based
on historical data from
the feature vector

GREAT – AAL-2016-023

114

relaxed. It turned out that this extension to the system was very well received among
care giving personal.

This scheduling system can also be used to define time frames, where the automatic
intervention recommendation system should be active. Details for this scheduling
feature can be found in chapter 11.2.

12.6. Rule-Based Recommendations

Since it was not possible with the machine learning approach to let the GREAT
system search for patterns in movement activity on its own, we decided to define
patterns manually and let the GREAT system search for them during use. However,
since a pattern cannot cover all cases of practical use, the definition of the pattern is
continuously adapted by the GREAT system, based on the data collected so far. In
this respect, it is a non-deterministic rule system. In some aspects it is also a recursive
rule system, because the adjusted variables have an influence on further
adjustments.

12.6.1. Processing Rule

The measure of motion activity is determined by the number of times the PIR sensors
are triggered within five minutes. This gives us a noise signal filtering. In order to
identify patterns in motion activity, we work exclusively with 24h profiles of this motion
measure. Over all past days, an average 24h profile is first formed since the start of
the measurement. A low-pass filter with finite impulse response (FIR low-pass to
remove strong fluctuations in motion activity) is applied to this profile. This
corresponds to a moving average with centering. By stretching and compressing the
time series in the y-direction, the regular range for allowed deviations from the
moving average of a currently registered motion measure is defined (see Figure 62).

During operation it is then registered how often the current degree of movement lies
outside the normal range in direct succession (every 5 minutes). In the standard
setting, it may not be above or below the normal range more than three times in
succession (this corresponds to 15 minutes). If, in individual cases, the current motion
measure falls below or exceeds the regular range three times in a sequence, a
corresponding intervention is triggered. As long as an intervention is running, no new
intervention can be triggered (see Figure 63). By default, the relaxation intervention
lasts 40 minutes and the activation intervention 20 minutes.

GREAT – AAL-2016-023

115

Figure 62: The red lines show the average 24h profile, which is calculated from all motion measures (of
room 228 in Neumarkt) since the start of the measurement. The blue lines show the motion measure in
room 228 in Neumarkt for one single day. The green lines indicate the normal range, generated from
low-pass filter as well as compressing and stretching the time series. The flash symbol indicates where an
activation intervention is started and the ZZZ symbol indicates where a relaxation intervention is started.

Figure 63: The arrow indicates a point at which an activation intervention would be triggered if an
intervention was not already running.

12.6.2. Continuous Adjustment of Variables

If the same intervention is triggered twice in short succession, if the relaxation or
activation intervention is not triggered at all or is triggered more than six times during
the day, the GREAT system will adjust variables of the control system. All adjustments

GREAT – AAL-2016-023

116

are reset weekly as long as there is insufficient experience with the continuous
adjustment of variables. The two onset values mentioned can also be adjusted at a
later date.

The window size for the low-pass filter and the compressing and stretching factor is
adjusted if an intervention is triggered more than six times in one day or not at all. In
the first case the factors are increased by 20%, in the second case they are
decreased by 20%. If the onset value is still reached the following day, then the value
for the frequency of deviation from the regular range (which is necessary to trigger
an intervention) is reduced or increased by one single case.

Figure 64: In this example, the same intervention is triggered twice directly after each other. If this had
happened a second time on that day, the duration and intensity of the intervention would have been
adjusted.

The duration and intensity of the intervention is adjusted, if the same intervention is
triggered twice directly after each other (maximum 5 minutes after the end of an
intervention) in two consecutive cases per day. Then the duration of the intervention
is increased by five minutes. If this case occurs again, the intensity of the intervention
is increased by 25% (more fragrance atomization, adjustment of the brightness and
color of the light and the frequency of the sound) (see Figure 64).

12.6.3. Block diagram and parameters of the control system

Figure 65 shows the basic blocks of the adaptive rule-based system, with the
described parameters.

GREAT – AAL-2016-023

117

Figure 65: Block diagram of the control system.

M... measure of physical activity

x̅M...mean value of physical activity

np...number of past days

x̅FIR...moving average of the movement activity

w..window size for low pass filter

ac...compressing factor

as...stretching factor

dR...frequency of deviation from the regular range

la...duration of the activation intervention

lr...duration of the sedation intervention

ia...intensity of the activation intervention

ir...intensity of the sedation intervention

os...maximum value for successive interventions

of...maximum value for interventions per day

rl...period for the reset

12.7. Summary and further research

Developing daily routines and activities that are meaningful is one of the most
challenging aspects of providing care for PwD [16]. Our system aims at enhancing
the quality of life of PwD and their caregivers by tackling this challenge. This is to be
achieved by inducing the right mood for predefined activities (i.e. eating, sleeping,
walking) in PwD and addressing behavioural problems such as agitation and apathy.

GREAT – AAL-2016-023

118

Over the last year and a half, we have been working to develop, implement and
validate an intelligent, modular, persuasive ambient system to prepare PwD for new
or changing activities during the day and thereby assist the care recipients as well as
the caregivers. The system should be usable out of the box in dementia care facilities
and households with PwD.

Based on our experience so far and the challenges we are facing we have come to
question if automated recommendations triggered by frequently unreliable input
data is the most appropriate approach for achieving the objectives of our project.
Machine learning approaches require a host of different parameters and benefit
from big data samples. If the training samples contain situations with certain patterns
that are not related to the level of agitation or apathy of members of the target
group, the trained algorithm will trigger false positives.

Given the reduced set of parameters and the relatively low number of test cases,
different approaches may have to be considered, such as the use of anomaly
detection algorithms.

In addition to this, we might use image-recognition based approaches for deducing
activity levels. To alleviate privacy concerns, we could derive an activity index from
different movement patterns without the need for external processing of the video
feed (black box approach). [17] provide a comprehensive survey of recent
approaches to activity recognition based on different video-based sensors. Some
studies used Doppler radar sensors capable of penetrating rigid objects (occlusion
prevention).

As pointed out, a major challenge for the machine learning system to predict
agitation situations reliably is the noise to be expected in the data generation
process. Since the data does not come from the actual PwD but from the carer, the
chain of events that lead to a change in the stress level might be triggered by some
other factor than the PwD. In effect, the indirect measurement might lead to low
predictive quality of the system because changes in the stress level may be caused
by factors not immediately related to PwD.

The two alternative approaches regarding automated control, scheduling and rule-
based reasoning appear to be more promising for the GREAT system for the type of
decisions to be made under the given sensor data. However, the rule-based system
needs further testing and tuning in the field before the release of a final product.

GREAT – AAL-2016-023

119

13. Setup Procedure of the Final GREAT Product

The configuration steps described in previous sections of this document were well
fitted for setting up the field test prototypes. For the final product, however, the setup
process needs to be much simpler.

Our goal is to have a product, that can be easily configured by end users, without
the need for using the Intefox configuration software.

From a user perspective, steps involve unpacking, connecting the devices to power
outlets, and launching the GREAT app for completing the setup. The app will also be
used if new modules need to be added to the configuration or if existing modules
should be reconfigured to connect to a different network.

A typical setup procedure will work like described in the following steps:

The GREAT package contains the GREAT controller and one or more modules - either
lamp, scent, or sound modules. The system is preconfigured, so only power and
network connections need to be plugged in.

When the GREAT controller is powered on, it will launch in access point mode,
offering an independent GREAT WLAN network. All new GREAT modules will
automatically search for an available GREAT network and connect to it once it’s
available.

The customer then launches the app and waits for the system to become available.
In the standard success scenario, the system will be ready to use then (see Figure 66).

Configuration by using the GREAT app

Upon start, the GREAT app will send a UDP broadcast command to scan all available
controllers within the network. If the controller is connected via LAN, the system will
immediately be visible in the app, saying that the system is ready to use (see Figure
66).

If the controller should be connected to a customer provided WIFI instead and no
wired connection is available for the GREAT controller, the app will not be able to
find the controller initially. The mobile device running the app then instructs the user
to connect to the GREAT WLAN network provided by the controller (see Figure 67).

GREAT – AAL-2016-023

120

Figure 66: Initial setup of the GREAT system without additional configuration necessary

Figure 67: Failed search - giving instructions for changing the WLAN

GREAT – AAL-2016-023

121

Once the app is connected to the controller, the option is given to either use the
system directly, or to customize its settings (see Figure 66, right), like adding further
modules or changing the WLAN network connection (see Figure 68).

Figure 68: Main settings screen (left) and WLAN selection screen (right)

On the network selection screen, users can choose one of the available WIFI
networks to connect to and then enter the network credentials.

After tapping “Reconnect to WLAN” the controller will then try to connect to the
provided WIFI network, while at the same time, keeping its own GREAT WLAN network
up, until configuration is finished.

All unconfigured devices will automatically try to connect to the controller over the
GREAT WLAN network. Once they are connected to the controller, the controller will
send its configured WLAN network paramters to the modules over an encrypted
channel, so the modules can then also connect via the customer provided network.

If a module is already configured and it is not able to connect to the controller over
the configured WLAN network, it will automatically fall back to trying to connect to
the default GREAT WLAN network (e.g. the module has been moved to another
location with different network settings).

GREAT – AAL-2016-023

122

The app will show all currently available new modules on the main settings screen
(see Figure 68, left), where users can easily add them to the current configuration by
tapping them, and selecting a zone from the available options on the followup
screen (see Figure 69, left)

Users can also add more zones to the configuration. By tapping “Add Zone” on the
main settings screen (see Figure 68, left), a new zone will be created, that can then
be customized on its detail screen (see Figure 69, right).

Figure 69: Module management (left) and zone management (right)

Zones can also be removed from the configuration by tapping “Remove Zone”. All
modules assigned to the zone that should be deleted will then again show up as new
modules on the main settings screen.

If an existing module should be reassigned to a different zone, the module can be
accessed via the currently assigned zone. By tapping the module, a details screen
will be shown, where the module can be assigned to a different zone by tapping on
the intended zone name (see Figure 69, left).

The main settings screen also offers an update function, to keep controller and
modules up to date. The app will compare the installed version numbers with
available version numbers, and then either confirm that the controller and the
modules are up-to-date (see Figure 70, left) or show all the updates available. Users
can then decide to update all of them, or only selected ones (see Figure 70, right).

GREAT – AAL-2016-023

123

Figure 70: Update handling of the GREAT system components

Once the configuration process in the settings part is finished, the controller will
automatically update its configuration in the background and reflect the newly
created zones and their assigned modules on the main control screen, like described
in chapter 10.

GREAT – AAL-2016-023

124

14. References

1 Barsade, S. G., & Gibson, D. E. (2012). Group affect: Its influence on individual and group outcomes.
Current Directions in Psychological Science, 21(2), 119-123.

2 Hackman, J. R., & Katz, N. (2010). Group behavior and performance. In S. T. Fiske, D. T. Gilbert, &
G. Lindzey (Eds.), Handbook of social psychology (5th ed., pp. 1208–1251). New York, NY: Wiley.

3 Kelly, J. R., & Barsade, S. G. (2001). Mood and emotions in small groups and work teams.
Organizational Behavior and Human Decision Processes, 86, 99–130.

4 Parkinson, B., Fischer, A. H., & Manstead, A. S. R. (2005). Emotions in social relations: Cultural,
group, and interpersonal processes. New York, NY: Psychology Press.

5 Parkinson, B. (2011). Interpersonal emotion transfer: Contagion and social appraisal. Social and
Personality Psychology Compass, 5(7), 428-439.

6 Ekkekakis, P. (2013). The measurement of affect, mood, and emotion: A guide for health-behavioral
research. Cambridge University Press.

7 American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders
(DSM-5®). American Psychiatric Pub.

8 Kramer, A. D., Guillory, J. E., & Hancock, J. T. (2014). Experimental evidence of massive-scale
emotional contagion through social networks. Proceedings of the National Academy of Sciences,
111(24), 8788-8790.

9 Keltner, D., & Haidt, J. (1999). Social functions of emotions at four levels of analysis. Cognition &
Emotion, 13(5), 505-521.

10 Williams, C. L., & Tappen, R. M. (2007). Effect of exercise on mood in nursing home residents with
Alzheimer's disease. American Journal of Alzheimer's Disease & Other Dementias®, 22(5), 389-397.

11 Udelsman, R., Norton, J. A., Jelenich, S. E., Goldstein, D. S., Linehan, W. M., Loriaux, D. L., &
Chrousos, G. P. (1987). Responses of the hypothalamic-pituitary-adrenal and renin-angiotensin axes
and the sympathetic system during controlled surgical and anesthetic stress. The Journal of Clinical
Endocrinology & Metabolism, 64(5), 986-994.

12 Schulz, P., Kirschbaum, C., Prüßner, J., & Hellhammer, D. (1998). Increased free cortisol secretion
after awakening in chronically stressed individuals due to work overload. Stress medicine, 14(2), 91-
97.

13 Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools,
and techniques to build intelligent systems. " O'Reilly Media, Inc.".

14 Maier, E., Reimer, U., Laurenzi, E., Ridinger, M., & Ulmer, T. (2014). A mobile solution for stress
recognition and prevention. In Proc. Int’l Conf. Health Informatics (HealthInf) (pp. 428-433).

15 Reimer, U., Laurenzi, E., Maier, E., & Ulmer, T. (2017). Mobile Stress Recognition and Relaxation
Support with SmartCoping: User-Adaptive Interpretation of Physiological Stress Parameters. In
Proceedings of the 50th Hawaii International Conference on System Sciences.

16 Rahman, S., 2014. Living Well with Dementia: The Importance of the Person and the Environment
for Wellbeing, 1 edition. ed. CRC Press, London; New York.

17 Uddin, Z., Khaksar, W., Torresen, J. (2018). Ambient Sensors for Elderly Care and Independent
Living: A Survey. In: Sensors 18 (7).

GREAT – AAL-2016-023

125

15. List of Figures

Figure 1: GREAT Components Overview, Source: GREAT consortium. 7
Figure 2: GREAT Distributed System Overview, Source: GREAT consortium. 8
Figure 3: Distributed GREAT installations connected over VPN. .. 9
Figure 4: OSGi Architecture Diagram, Source: OSGi Alliance,
https://www.osgi.org/developer/architecture .. 10
Figure 5: Screenshot of the Intefox configuration software showing connections
between individual elements... 11
Figure 6: Basic architecture of the foxcore server ... 16
Figure 7: fox.configurator, example of adding a new light object 17
Figure 8: Online bundle manager ... 18
Figure 9: Basic structure of the event logging architecture .. 18
Figure 10: Select the created event logger and edit the properties (URL and Context)
 .. 20
Figure 11: Properties of the event logger service ... 20
Figure 12: In this example, the 'Temperature' output of all 'Temperature sensors' will be
logged, even if they are being created later. ... 22
Figure 13: Entity relationship diagram for the logging data backend 29
Figure 14: Example login request ... 31
Figure 15: Example description request ... 33
Figure 16: Example structure request .. 35
Figure 17: Example long poll request with no changes .. 36
Figure 18: Example long poll request with changes .. 36
Figure 19: Example cmd request to switch two lighs on ... 37
Figure 20: Example biodynamic light definition ... 38
Figure 21: Example: Activation Light 'cue' definition ... 39
Figure 22: Example: Calming light 'cue' definition ... 39
Figure 23: Configuration of the Light curve object in conjunction with the light device
 .. 40
Figure 24: Luminaire schematic ... 46
Figure 25: Communication between the Intefox music module extension and the
sound module. .. 48
Figure 26:The available connections for the music module extension for the Intefox
system and its parameter settings. .. 53
Figure 27: Dimensions of sound characteristics regarding receptibility, valence and
direction .. 63
Figure 28: Integration of the scent module into the GREAT controller system based on
Intefox.. 66
Figure 29: Input and output events (left) and parameter settings (right) of the scent
module extension. .. 68
Figure 30: Forwarding of TCP310 EnOcean Telegrams via UDP .. 73
Figure 31: Heart Inter-Beat-Interval.. 76
Figure 32: Stress index values and 1-hour phases .. 77
Figure 33: Everion sensor setup .. 78

GREAT – AAL-2016-023

126

Figure 34: PC Tool VSM1 pairing with sensor.. 78
Figure 35: Data file structure ... 84
Figure 36: Integration of Biovotion HRV statistics into the GREAT system. 85
Figure 37: Screenshots of the main menu, the scent-, and sound-module offering
control for starting an activation or relaxation session. .. 86
Figure 38: Screenshots of the light control page and the status view for the motion
detector. ... 87
Figure 39: GREAT user client main screen with all elements enabled. 88
Figure 40: GREAT user client: starting an intervention ... 89
Figure 41: GREAT User client with customization optinos before the intervention (left,)
and status feedback and cancel option during an ongoing intervention (right) 90
Figure 42: GREAT User client: after an intervention (asking for feedback) 91
Figure 43: Assigning a user to the GREAT user client ... 92
Figure 44: Assigning a Light curve object to the GREAT user client 92
Figure 45: GREAT user client settings ... 93
Figure 46: GREAT user client room settings ot enable/disable modules and buttons .. 93
Figure 47: The GREAT Manager system structure consisting of a web-based front end
for administration, the backend services for configuration/data persistence and the
local GREAT devices communicating over a REST API with the backend. 94
Figure 48: Data model of the GREAT Manager backend .. 95
Figure 49: Login and main menu of the GREAT Manager interface 95
Figure 50: The lightcurve editor screen allows for customizing light curves 96
Figure 51: Schedule editor for creating schedules when certain interventions should
be triggered. .. 97
Figure 52: Inputs/Outputs and properties of the GREAT-Scheduler extension 98
Figure 53: Playlist editor for customizing sound playlists for activation and relaxation
sessions. ... 100
Figure 54: Data download area for downloading packages for offline analysis. 101
Figure 55: Machine learning approach with classifier variants 104
Figure 56: Stress Index and intervention events (scent and sound) 104
Figure 57: System trigger points for learning the trigger situation 105
Figure 58: Binary motion data characterization within a time frame. 109
Figure 59: Relationship among two parameters and intervention state (blue...no
intervention, orange...intervention) .. 110
Figure 60: Learning system pipeline from live events to recommendations 111
Figure 61: Extended learning system pipeline for considering historical data points
too. ... 113
Figure 62: The red lines show the average 24h profile, which is calculated from all
motion measures (of room 228 in Neumarkt) since the start of the measurement. The
blue lines show the motion measure in room 228 in Neumarkt for one single day. The
green lines indicate the normal range, generated from low-pass filter as well as
compressing and stretching the time series. The flash symbol indicates where an
activation intervention is started and the ZZZ symbol indicates where a relaxation
intervention is started. .. 115
Figure 63: The arrow indicates a point at which an activation intervention would be
triggered if an intervention was not already running. .. 115

GREAT – AAL-2016-023

127

Figure 64: In this example, the same intervention is triggered twice directly after each
other. If this had happened a second time on that day, the duration and intensity of
the intervention would have been adjusted. ... 116
Figure 65: Block diagram of the control system. .. 117
Figure 66: Initial setup of the GREAT system without additional configuration
necessary .. 120
Figure 67: Failed search - giving instructions for changing the WLAN 120
Figure 68: Main settings screen (left) and WLAN selection screen (right) 121
Figure 69: Module management (left) and zone management (right) 122
Figure 70: Update handling of the GREAT system components 123

16. List of Tables
Table 1: Configuration tables ... 26
Table 2: RAW value tables .. 28
Table 3: Aggregated value tables .. 28
Table 4: Login Parameters ... 30
Table 5: Request object types (t) .. 32
Table 6: Request values (v) ... 32
Table 7: Command (cmd) parameters ... 37
Table 8: Description of input events of the music module extension. 53
Table 9: Description of output events of the music module extension. 54
Table 10: Description of parameters of the music module extension. 55
Table 11: Description of input events of the scent module extension. 68
Table 12: Description of output events of the scent module extension. 69
Table 13: Description of parameters of the scent module extension. 69
Table 14: Description of parametres fort he repeater script. .. 74
Table 15: Thermokon "EasySens" SR-MDS BAT specification ... 75
Table 16 Vitals of light skin algo mode ... 80
Table 17: Value specifications.. 80
Table 18: Quality value specification ... 82
Table 19: Inputs of the scheduler extension .. 98
Table 20: Outputs of the scheduler extension .. 98
Table 21: Parameters of the scheduler extension .. 99
Table 22: Performance metrics of classifiers for the given feature vector on the field
test training set .. 111

